Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

Abstract

Sustainability is proposed as a solution to the many negative consequences of modern agriculture. However, although science and policy have aimed for sustainability for more than two decades, it seems that we are not making enough progress. This is due to the complexities of the sustainability concept and that we need to better understand how we can create change. In seeing sustainability as a learning process, this thesis aims to understand how to enhance farm sustainability in Arctic Norway. This is achieved by combining four research rationales: stakeholders’ perspectives, sustainability assessments, sustainability learning, and participatory approaches. I use a case study strategy involving farms in Arctic Norway. By applying a multimethod qualitative approach, I explore the topic through three empirical papers wherein stakeholder participation plays a prominent role. By discussing the findings, I conceptualize farm sustainability as a long-term and multilevel learning process. To achieve farm sustainability, several steps must be aligned: there must be a purpose for the process, various stakeholders must take part, we must know what to learn, a transdisciplinary methodology must be used, and the process should be flexible. In addition, the process must be embedded in the very way of farming. The relevance of these findings is that farm sustainability must be aligned with change toward improved sustainability in society at large. Context plays a major role in what, why, and how we can learn, as well as in who we can learn with. Therefore, farm sustainability as a learning process must be translated to fit the empirical context. This thesis contributes to theory development in the field of agricultural sustainability. Furthermore, it deepens our understanding of how values and context influence farm sustainability, demonstrates the relevance of combining sustainability assessments with a learning process, and broadens our understanding of sustainability learning in agriculture. In combining ‘sustainability as a theory’ and ‘sustainability as a practice’, lies the key to farm sustainability in Arctic Norway.

To document

Abstract

It has been shown that the COVID-19 pandemic affected some agricultural systems more than others, and even within geographic regions, not all farms were affected to the same extent. To build resilience of agricultural systems to future shocks, it is key to understand which farms were affected and why. In this study, we examined farmers’ perceived robustness to COVID-19, a key resilience capacity. We conducted standardized farmer interviews (n = 257) in 15 case study areas across Europe, covering a large range of socio-ecological contexts and farm types. Interviews targeted perceived livelihood impacts of the COVID-19 pandemic on productivity, sales, price, labor availability, and supply chains in 2020, as well as farm(er) characteristics and farm management. Our study corroborates earlier evidence that most farms were not or only slightly affected by the first wave(s) of the pandemic in 2020, and that impacts varied widely by study region. However, a significant minority of farmers across Europe reported that the pandemic was “the worst crisis in a lifetime” (3%) or “the worst crisis in a decade” (7%). Statistical analysis showed that more specialized and intensive farms were more likely to have perceived negative impacts. From a societal perspective, this suggests that highly specialized, intensive farms face higher vulnerability to shocks that affect regional to global supply chains. Supporting farmers in the diversification of their production systems while decreasing dependence on service suppliers and supply chain actors may increase their robustness to future disruptions.

To document

Abstract

Coconut production is significantly constrained by a wide variety of pests. Anecdotal evidence also suggests that management of these pests is influenced by gender differences. Therefore, there was a need to assess farmers' knowledge about coconut pests, farm-level pest management strategies, and institutions offering training to farmers to develop an ecologically sound management strategy. To achieve this research need, we surveyed six coconut-growing districts, three each from the Western and Central Regions of Ghana, using face-to-face interviews, discussions, and direct observations. In addition, a multistage sampling technique was used to sample the coconut farmers. The sample population for each town was determined using a proportional to population size approach. The sample population was randomly drawn from each town/village using a sampling frame based on the agricultural sector records. The results showed that a majority of the farmers mentioned Oryctes monoceros as the most important coconut pest. Significantly more females than males mentioned weaver birds in their plantations (P = 0.035). The number of women who did not mention any of the pests was significantly higher than that of men (P = 0.007). There was a significant difference between male and female farmers who used indigenous knowledge (i.e., knowledge accumulated by an indigenous [local] population over generations of living in a certain area) (P = 0.018) for pest management. However, pest management strategies did not vary in the Central Region. Our results showed a significant difference between male and female farmers who did not use any of the management strategies, suggesting that future studies and training should consider gender in developing sustainable pest management strategies for the pests.

To document

Abstract

Seed production is an important element of weed population dynamics, and weed persistence relies upon the soil seed bank. In 2017 and 2018, we studied the relationship between the aboveground dry biomass of common weed species and their seed production. Weeds were selected randomly in the fields, and we surrounded the plants with a porous net to collect shed seeds during the growth season. Just before crop harvest, weeds were harvested, the plants’ dry weights were measured, and the number of seeds retained on the weeds was counted. A linear relationship between the biomass and the number of seeds produced was estimated. This relationship was not affected by year for Avena spica-venti, Chenopodium album, Galium aparine, or Persicaria maculosa. Therefore, the data of the two seasons were pooled and analysed together. For Alopecurus myosuroides, Anagallis arvensis, Capsella bursa-pastoris, Geranium molle, Polygonum aviculare, Silene noctiflora, Sonchus arvensis, Veronica persica, and Viola arvensis, the relationship varied significantly between the years. In 2017, the growing season was cold and wet, and the slope of the regression lines was less steep than in the dry season in 2018 for most species. Capsella bursa-pastoris was the most prolific seed producer with the steepest slope.

To document

Abstract

The INTENSE project, supported by the EU Era-Net Facce Surplus, aimed at increasing crop production on marginal land, including those with contaminated soils. A field trial was set up at a former wood preservation site to phytomanage a Cu/PAH-contaminated sandy soil. The novelty was to assess the influence of five organic amendments differing in their composition and production process, i.e. solid fractions before and after biodigestion of pig manure, compost and compost pellets (produced from spent mushroom substrate, biogas digestate and straw), and greenwaste compost, on Cu availability, soil properties, nutrient supply, and plant growth. Organic amendments were incorporated into the soil at 2.3% and 5% soil w/w. Total soil Cu varied from 179 to 1520 mg kg−1, and 1 M NH4NO3-extractable soil Cu ranged from 4.7 to 104 mg kg−1 across the 25 plots. Spring barley (Hordeum vulgare cv. Ella) was cultivated in plots. Changes in physico-chemical soil properties, shoot DW yield, shoot ionome, and shoot Cu uptake depending on extractable soil Cu and the soil treatments are reported. Shoot Cu concentration varied from 45 ± 24 to 140 ± 193 mg kg DW−1 and generally increased with extractable soil Cu. Shoot DW yield, shoot Cu concentration, and shoot Cu uptake of barley plants did not significantly differ across the soil treatments in year 1. Based on soil and plant parameters, the effects of the compost and pig manure treatments were globally discriminated from those of the untreated, greenwaste compost and digested pig manure treatments. Compost and its pellets at the 5% addition rate promoted soil functions related to primary production, water purification, and soil fertility, and the soil quality index.

To document

Abstract

A series of 131I tracer experiments have been conducted at two research stations in Norway, one coastal and one inland to study radioiodine transfer and dynamics in boreal, agricultural ecosystems. The hypothesis tested was that site specific and climatological factors, along with growth stage, would influence foliar uptake of 131I by grass and its subsequent loss. Results showed that the interception fraction varied widely, ranging from 0.007 to 0.83 over all experiments, and showing a strong positive correlation with biomass and stage of growth. The experimental results were compared to various models currently used to predict interception fractions and weathering loss. Results provided by interception models varied in the range of 0.5–2 times of the observed values. Regarding weathering loss, it was demonstrated that double exponential models provided a better fit with the experimental results than single exponential models. Normalising the data activity per unit area to remove bio-dilution effects, and assuming a constant single loss rate gave weathering half-times of 22.8 ± 38.3 and 10.2 ± 8.2 days for the inland and coastal site, respectively. Whilst stable iodine concentrations in grass and soil were significantly higher (by approximately a factor of 5 and 7 times for grass and soil respectively) at the coastal compared to the inland site, it was not possible to deconvolute the influence of this factor on the temporal behaviour of 131I. Nonetheless, stable iodine data allowed us to establish an upper bound on the soil to plant transfer of radioiodine via root uptake and to establish that the pathway was of minor importance in defining 131I activity concentrations in grass compared to direct contamination via interception. Climatological factors (precipitation, wind-speed and temperature) appeared to affect the dynamics of 131I in the system, however the decomposition of these collective influences into specific contributions from each factor remains unresolved and requires further study. The newly acquired data on the interception and weathering of radioiodine in boreal, agricultural ecosystems and the reparametrized models developed from this, substantially improve the toolbox available for Norwegian emergency preparedness in the event of a nuclear accident.

Abstract

VIPS is a technology platform for prognosis, monitoring and decision support for integrated pest management in crops in Norway. The service facilitates access to a Danish decision support tool, IPMwise, for the management of weeds. This tool, called VIPS-weeds in Norway, is adjusted to the Norwegian conditions for cereals. VIPS-weeds selects and adjusts the dose of herbicides according to weed species, weed density and temperature. The tool is being tested each year for local adaptations and updating. In 2021, four experiments were performed in spring wheat and barley. The experiments were designed in completely randomised blocks with three replications, and each included a control (unsprayed), a VIPS-weeds, and an adviser choice plot as well as plots for a variety of herbicides that are common in these crops. The weed species and density, development stage and possible herbicide resistance of each species in the control plots as well as crop information and temperature data were registered in VIPS-weeds three days before the normal spraying time. The suggested herbicides (set to be suggested based on the price) were applied to the VIPS-weeds plots. The effect of suggested herbicides and their dose was assessed as the reduction of weed coverage (%) in sprayed plots compared to the control plots 3-4 weeks after spraying. The average efficacy targets for the weed species (observed at least in two fields) Spergula arvensis, Viola sp., Stellaria media, Galeopsis sp., Chenopodium album, and Fumaria officinalis were predicted to be at 91, 84, 65, 83, 80, and 72% respectively, by VIPS-weeds. The results showed an average efficacy of 45, 58, 79, 80, 91 and 82% for these weeds, respectively. The VIPS-weeds solution was economically reasonable and gave similar results as adviser choice in terms of weed control and yield.

To document

Abstract

The Expert Group for Technical Advice on Organic Production (EGTOP) was requested to advise on the use of several substances in organic production. The Group discussed whether the use of these substances is in line with the objectives and principles of organic production and whether they should therefore be included in Annex III of Reg. (EU) 2021/1165. With respect to feed the Group recommends the following: - Leonardite should not be included in Annex III. - Sepiolitic clay should be included in Annex III, part B. - Peat should not be included in Annex III. With respect to pet food, the Group recommends the following: - Locust bean gum should be included in Annex III, part B with the following conditions/limits: only for pet food and obtained only from the roasting process and from organic production, if available. - Acacia-Arabic gum should be included in Annex III, part B with the following conditions/limits: only for pet food and from organic production, if available. - Carrageenan should be included in Annex III, part B with the following conditions/limits: only for pet food. - Ammonium chloride should be included in Annex III, part B with the following conditions/limits: only for pet food intended to be used for special nutritional purposes for cats. - (Ortho-)phosphoric acid should not be included in Annex III. - Taurine should be included in Annex III, part B with the following conditions/limits: only for cats and dogs, not from GMO origin and if possible not from synthetic origin. - Methionine should not be included in Annex III. - Disodium dihydrogen diphosphate (SAPP) should be included in Annex III, part A with the following conditions/limits: only for pet food. - Pentasodium triphosphate (STPP) should be included in Annex III, part A with the following conditions/limits: only for pet food.