Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Abstract
The preservation of the functionality of forest soil is a key aspect in planning mechanized harvesting operations. Therefore, knowledge and information about stand and soil characteristics are vital to the planning process. In this respect, depth-to-water (DTW) maps were reviewed with regard to their potential use as a prediction tool for wheel ruts. To test the applicability of open source DTW maps for prediction of rutting, the ground surface conditions of 20 clear-cut sites were recorded post harvesting, using an unmanned aerial vehicle (UAV). In total, 80 km of machine tracks were categorized by the severity of occurring rut-formations to investigate whether: i) operators intuitively avoid areas with low DTW values, ii) a correlation exists between decreasing DTW values and increasing rut severity, and iii) DTW maps can serve as reliable decision-making tool in minimizing the environmental effects of big machinery deployment. While the machine operators did not have access to these predictions (DTW maps) during the operations, there was no visual evidence that driving through these areas was actively avoided, resulting in a higher density of severe rutting within areas with DTW values <1 m. A logistic regression analysis confirmed that the probability of severe rutting rapidly increases with decreasing DTW values. However, significant differences between sites exist which might be attributed to a series of other factors such as soil type, weather conditions, number of passes and load capacity. Monitoring these factors is hence highly recommended in any further follow-up studies on soil trafficability.
Authors
Misganu Debella-GiloAbstract
Parts of the limited agricultural land area in Norway are taken up by buildings, roads, and other permanent changes every year. A method that detects such changes immediately after they have taken place is required in order to monitor the agricultural areas closely. To that end, Sentinel-2 satellite image time series (SITS) acquired during the summer of 2019 were used to detect the agricultural areas taken up by permanent changes such as buildings and roads. A deep-learning algorithm using 1D convolutional neural network (CNN), with the convolution in the temporal dimension, was applied to the SITS data. The training data was collected from the building footprints dataset filtered using a mono-temporal image aided with the areal resource map (AR5). The deep-learning model was trained and evaluated before being used for prediction in two regions of Norway. Procedures to reduce overfitting of the model to the training data were also implemented. The trained model showed a high level of accuracy and robustness when evaluated based on a test dataset kept out of the training process. The trained model was then used to predict new built-up areas in agricultural fields in two Sentinel-2 tiles. The prediction was able to detect areas taken by new buildings, roads, parking areas and other similar changes. The prediction was then evaluated with respect to the existing building footprints after a few post-processing procedures. A high percentage of the buildings were detected by the method, except for small buildings. The details of the methods and the results obtained, together with brief discussion, are presented in this paper.
Abstract
Pathogenic wood decay fungi such as species of Heterobasidion are some of the most serious forest pathogens in Europe, causing rot of tree boles and loss of growth, with estimated economic losses of eight hundred million euros per year. In conifers with low resinous heartwood such as species of Picea and Abies, these fungi are commonly confined to heartwood and thus external infection signs on the bark or foliage of trees are normally absent. Consequently, determining the extent of disease presence in a forest stand with field surveys is not practical for guiding forest management decisions such as optimal rotation time. Remote sensing technologies such as airborne laser scanning and aerial imagery are already used to reduce the reliance on fieldwork in forest inventories. This study aimed to use remote sensing to detect rot in spruce (Picea abies L. Karst.) forests in Norway. An airborne hyperspectral imager provided information for classifying the presence or absence of rot in a single-tree-based framework. Ground reference data showing the presence of rot were collected by harvest machine operators during the harvest of forest stands. Random forest and support vector machine algorithms were used to classify the presence and absence of rot. Results indicate a 64% overall classification accuracy for presence-absence classification of rot, although additional work remains to make the classifications usable for practical forest management.
Abstract
Active crop sensor-based precision nitrogen (N) management can significantly improve N use efficiency but generally does not increase crop yield. The objective of this research was to develop and evaluate an active canopy sensor-based precision rice management system in terms of grain yield and quality, N use efficiency, and lodging resistance as compared with farmer practice, regional optimum rice management system recommended by the extension service, and a chlorophyll meter-based precision rice management system. Two field experiments were conducted from 2011 to 2013 at Jiansanjiang Experiment Station of China Agricultural University in Heilongjiang, China, involving four rice management systems and two varieties (Kongyu 131 and Longjing 21). The results indicated that the canopy sensor-based precision rice management system significantly increased rice grain yield (by 9.4–13.5%) over the farmer practice while improving N use efficiency, grain quality, and lodging resistance. Compared with the already optimized regional optimum rice management system, in the cool weather year of 2011, the developed system decreased the N rate applied in Kongyu 131 by 12% and improved N use efficiency without inducing yield loss. In the warm weather year of 2013, the canopy sensor-based management system recommended an 8% higher N rate to be applied in Longjing 21 than the regional optimum rice management, which improved rice panicle number per unit area and eventually led to increased grain yield by over 10% and improved N use efficiency. More studies are needed to further test the developed active canopy sensor-based precision rice management system under more diverse on-farm conditions and further improve it using unmanned aerial vehicle or satellite remote sensing technologies for large-scale applications.
Authors
Alejandro Belanche Alexander N. Hristov Henk Van Lingen Stuart J Denman Ermias Kebreab Angela Dagmar Schwarm Michael Kreuzer Maguy A. Eugène Mark McGee Christopher K. Reynolds Les A. Crompton Ali-Reza Bayat Zhongtang Yu André Bannink Jan Dijkstra Alex V. Chaves Harry Clark Stefan Muetzel Vibeke Lind Jon M. Moorby John Rooke Walter Antezana Mi Wang Roger Hegarty Jean Victor Savian Adibe Luiz Abdalla Alda Lucia Gomes Monteiro Juan Carlos Ku-Vera Gustavo Jaurena Carlos Gomez Olga Mayorga Guilhermo de Souza David R. Yáñez-RuízAbstract
No abstract has been registered
Abstract
Tree diameter increment (ΔDBH) and total tree height increment (ΔHT) are key components of a forest growth and yield model. A problem in complex, multi-species forests is that individual tree attributes such as ΔDBH and ΔHT need to be characterized for a large number of distinct woody species of highly varying levels of occurrence. Based on more than 2.5 million ΔDBH observations and over 1 million ΔHT records from up to 60 tree species and genera, respectively, this study aimed to improve existing ΔDBH and ΔHT equations of the Acadian Variant of the Forest Vegetation Simulator (FVS-ACD) using a revised method that utilize tree species as a random effect. Our study clearly highlighted the efficiency and flexibility of this method for predicting ΔDBH and ΔHT. However, results also highlighted shortcomings of this approach, e.g., reversal of plausible parameter signs as a result of combining fixed and random effects parameter estimates after extending the random effect structure by incorporating North American ecoregions. Despite these potential shortcomings, the newly developed ΔDBH and ΔHT equations outperformed the ones currently used in FVS-ACD by reducing prediction bias quantified as mean absolute bias and root mean square error by at least 11% for an independent dataset and up to 41% for the model development dataset. Using the revised ΔDBH and ΔHT estimates, greater prediction accuracy in individual tree aboveground live carbon mass estimation was also found in general but performance varied with dataset and accuracy metric examined. Overall, this analysis highlights the importance and challenges of developing robust ΔDBH and ΔHT equations across broad regions dominated by mixed-species, managed forests.
Authors
Mladen Cucak Dalphy Ondine Camira Harteveld Lisa Wasko DeVetter Tobin L. Peever Rafael de Andrade Moral Chakradhar MattupalliAbstract
No abstract has been registered
Authors
Giovanna Ottaviani Aalmo Beniamino Gioli Divina Gracia P. Rodriguez Diana Tuomasjukka Hai-Ying Liu Maria Chiara Pastore Fabio Salbitano Peter Bogetoft Arne Sæbø Cecil KonijnendijkAbstract
The greenhouse gases (GHG) emissions in the European Union (EU) are mainly caused by human activity from five sectors—power, industry, transport, buildings, and agriculture. To tackle all these challenges, the EU actions and policies have been encouraging initiatives focusing on a holistic approach but these initiatives are not enough coordinated and connected to reach the much needed impact. To strengthen the important role of regions in climate actions, and stimulate wide stakeholders’ engagement including citizens, a conceptual framework for enabling rapid and far-reaching climate actions through multi-sectoral regional adaptation pathways is hereby developed. The target audience for this framework is composed by regional policy makers, developers and fellow scientists. The scale of the framework emphasizes the regional function as an important meeting point and delivery arena for European and national climate strategies and objectives both at urban and rural level. The framework is based on transformative and no-regret measures, prioritizing the Key Community Systems (KCS) that most urgently need to be protected from climate impacts and risks.
Abstract
No abstract has been registered
Abstract
No abstract has been registered