Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2025

To document

Abstract

Eucheumatoid seaweed farmers face a confluence of challenges emanating from presumed nutrient deficiency due to over-cropping, leading to low yields and frequent ice-ice disease outbreaks. Despite limited data on systemic nutrient limitations, some farmers clandestinely apply commercial inorganic fertilizers to accelerate growth and harvest premature crops after half of the prescribed 45-day cultivation period, sparking controversy. Unlike terrestrial agriculture, the use of inorganic fertilizers in eucheumatoid seaweed farming (ESF) is contentious. This stems from the haphazard use of the term “organic” to classify sea-grown crops without using synthetic fertilizers. However, when anthropogenic inorganic nutrient pollution fertilizes coastal seas, this effectively disqualifies these crops from the “organic” produce classification. This paper critically explores the use of artificial nutrient enrichment in ESF, assessing its impact on the crop's growth, ice-ice disease mitigation, carrageenan quality, and the marine environment. While controlled fundamental studies have shown that nutrient enrichment can significantly increase growth and potentially reduce disease occurrence, its inconsistent positive and negative effects on carrageenan yield and quality require further investigation with emphasis on organismal nutrient physiology and metabolism. Inorganic nutrient enrichment could also potentially alter the microbiome of eucheumatoid seaweeds. Whether inorganic nutrient enrichment in ESF will be sanctioned by the local and global regulators and policy makers, or not, increased knowledge is crucial for establishing basic science in order to rationally discuss challenges contributing to the decreasing production of quality raw, dried, eucheumatoid seaweed biomass for carrageenan processing, without compromising environmental and social responsibilities. Currently, the routine use of inorganic fertilizers in ESF is not authorized and remains a very sensitive issue, especially among marginalized subsistence seaweed farmers. In conclusion, inorganic nutrient enrichment in ESF presents a double-edged sword: whilst it can boost growth and potentially combat disease, its practice raises concerns on carrageenan yield and quality, and environmental pollution, as well as regulatory organic codes, necessitating further research for responsible implementation, when sanctioned. The bottom line is that when prescribed by regulators, the raw dried seaweed (RDS) and the subsequent products (both semi-refined and refined carrageenans) cannot be certified as “organic” when the crop is cultivated using inorganic fertilizers.

To document

Abstract

Arctic food systems blend Traditional Ecological Knowledge with modern, often energy-intensive influences, triggered by colonization. Food systems’ future depends on alignment of tradition with innovation, facilitation of resilience and a heritage-driven interaction with the global economy – at a pace determined by local communities.

To document

Abstract

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of soy leghemoglobin produced from genetically modified Komagataella phaffii for food uses in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. Soy leghemoglobin produced from genetically modified Komagataella phaffii This application is submitted to gain authorisation for the use of soy leghemoglobin (the liquid preparation is referred to as “LegH Prep”) produced from genetically modified Komagataella phaffii (yeast) as a flavouring (“meaty taste”) in meat analogue products that will be marketed in the European Union (EU). Soy leghemoglobin is intended for addition to meat analogue products that are for use in foods such as burgers, meatballs, and sausages. Komagataella phaffii-strain employed in the production of soy leghemoglobin contains genetic modifications which allow it to express this protein. Following fermentation, the cells are lysed, and the soy leghemoglobin is concentrated by physical means. The soy leghemoglobin is delivered in a liquid preparation (LegH Prep) that is standardised to contain up to 9% soy leghemoglobin on a wet weight basis and a soy leghemoglobin protein purity of at least 65%. The remainder of the protein fraction in the LegH Prep is accounted for by residual proteins from the Komagataella phaffii production strain. These residual proteins are all endogenous to Komagataella phaffii as the gene coding for the expression of soy leghemoglobin is the only gene from a different organism. VKM has assessed the documentation in application EFSA-GMO- NL-2019-162 and EFSA's scientific opinion for the use of soy leghemoglobin produced from genetically modified Komagataella phaffii. The scientific documentation provided in the application is adequate for risk assessment, and in accordance with the EFSA guidance on risk assessment of genetically modified microorganisms for use in food or feed. The VKM GMO Panel does not consider leghemoglobin from genetically modified Komagataella phaffii to imply potential specific health risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment was not performed by VKM. About the assignment: (...)

To document

Abstract

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of the genetically modified maize DP51291 for food and feed uses, import and processing in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. Genetically modified maize DP51291 Genetically modified maize DP51291 (application GMFF-2021-0071) was developed via Agrobacterium tumefaciens mediated transformation. DP51291 plants contain the transgenes ipd072Aa and pat which encode the proteins IPD072Aa and PAT (phosphinothricin acetyltransferase). IPD072Aa confers protection against susceptible corn rootworm pests, and the PAT protein confers tolerance to glufosinate herbicide. The phosphomannose isomerase (PMI) protein that was used as a selectable marker. VKM has assessed the documentation in application GMFF-2021-0071 and EFSA's scientific opinion on genetically modified maize DP51291. VKM concludes that the applicant's scientific documentation for the genetically modified maize DP51291 is satisfactory for risk assessment, and in accordance with EFSA guidelines for risk assessment of genetically modified plants for food or feed uses. The genetic modifications in maize DP51291 do not indicate an increased health or environmental risk in Norway compared with EU countries. EFSA's risk assessment is therefore sufficient also for Norwegian conditions. As no specific Norwegian conditions have been identified regarding properties of the genetically modified maize DP51291, VKM's GMO panel has not performed a complete risk assessment of the maize. (...)

Abstract

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of the genetically modified maize DAS1131 for food and feed uses, import and processing in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. (link) Genetically modified maize DAS1131 DAS1131 is a genetically modified maize developed by Agrobacterium tumefaciens -mediated transformation. Maize DAS1131 plants contain the transgenes cry1Da2 and dgt-28 epsps which encode the protein Cry1Da2 and the enzyme DGT-28 EPSPS, respectively. Cry1Da2 provides resistance to certain susceptible Lepidopteran (order of butterflies and moths) pests and the enzyme DGT-28 EPSPS provides tolerance to glyphosate-based herbicides. VKM has assessed the documentation in application GMFF-2021-1530 and EFSA's scientific opinion on genetically modified maize DAS1131. VKM concludes that the applicant's scientific documentation for the genetically modified maize DAS1131 is satisfactory for risk assessment, and in accordance with EFSA guidelines for risk assessment of genetically modified plants for food or feed uses. The genetic modifications in maize DAS1131do not indicate an increased health or environmental risk in Norway compared with EU countries. EFSA's risk assessment is therefore sufficient also for Norwegian conditions. As no specific Norwegian conditions have been identified regarding properties of the genetically modified maize DAS1131, VKM's GMO panel has not performed a complete risk assessment of the maize. About the assignment: In stage 1, VKM shall assess the health and environmental risks of the genetically modified organism and derived products in connection with the EFSA scientific hearing of GMO applications. VKM shall review the scientific documentation that the applicant has submitted and possibly provide comments to EFSA. VKM must also consider: i) whether there are specific Norwegian conditions that could give other risks in Norway than those mentioned in the application, ii) whether the Norwegian diet presents a different health risk for the Norwegian population should the GMO be approved, compared to the European population, and iii) risks associated with co-existence with conventional and/or ecologic production of plants for GMOs seeking approval for cultivation. Relevant measures to ensure co-existence must also be considered. In stage 2, VKM shall assess whether comments from Norway have been satisfactorily answered by EFSA. In addition, VKM shall assess whether comments from other countries imply need for further follow-up. (...)

Abstract

VKM has assessed possible health hazards associated with the use of frozen eggs of Sitotroga cerealella as feed. Background The plant protection products CHRYSObio and CHRYSOcontrol contain Chrysoperla carnea and frozen eggs of Sitotroga cerealella. The eggs are used as feed for the larvae of C. carnea, the beneficial organism in the products. VKM has previously assessed environmental and health risks associated with C. carnea. Since the eggs of S. cerealella are frozen (dead), VKM has now assessed only human health hazard associated with the eggs in the products CHRYSObio and CHRYSOcontrol. Conclusion Insect eggs, frozen or not, can carry pathogens that may be harmful to humans. Freezing can kill some of these pathogens, but some hardy pathogens can survive low temperatures. Some people are allergic to insect proteins, and freezing does not eliminate such proteins. However, VKM found no reports identifying eggs of S. cerealella neither as carriers of pathogens nor as a cause of allergies in humans. The risk assessment is approved by VKM's Panel on Plant Health.