Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Authors
Geir Wæhler Gustavsen Helge Berglann Elisabeth Jenssen Signe Kårstad Divina Gracia P. RodriguezAbstract
Urban agriculture is increasingly recognized as an important sustainable pathway for climate change adaptation and mitigation, for building more resilient cities, and for citizens’ health. Urban agriculture systems appear in many forms – both commercial and non-commercial. The value of the services derived from urban agriculture, e.g., enhanced food security, air quality, water regulation, and high level of biodiversity, is often difficult to quantify to inform policymakers and the general public in their decision making. We perform a contingent valuation survey of four different types of urban agriculture Where the citizens of Oslo are asked about their attitudes and willingness to pay non-commercial (urban community gardens and urban gardens for work training, education and kindergartens) and for commercial (i.e. aquaponics and vertical production) forms of urban agriculture. Results show that the citizens of Oslo are willing to increase their tax payments to contribute to further development of urban farming in Oslo.
Abstract
No abstract has been registered
Authors
Ruben Erik Roos Johan Asplund Tone Birkemoe Aud Helen Halbritter Rechsteiner Siri Lie Olsen Linn Vassvik Kristel van Zuijlen Kari KlanderudAbstract
No abstract has been registered
Authors
Arne Stensvand Natalia A. Peres David M. Gadoury Belachew Asalf Tadesse Aruppillai SuthaparanAbstract
No abstract has been registered
Authors
Jorge Aldea Ricardo Ruiz-Peinado Miren del Río Hans Pretzsch Michael Heym Gediminas Brazaitis Aris Jansons Marek Metslaid Ignacio Barbeito Kamil Bielak Gro Hylen Stig-Olof Holm Arne Nothdurft Roman Sitko Magnus LöfAbstract
1. Climate change is increasing the severity and frequency of droughts around the globe, leading to tree mortality that reduces production and provision of other ecosystem services. Recent studies show that growth of mixed stands may be more resilient to drought than pure stands. The two most economically important and widely distributed tree species in Europe are Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.), but little is known about their susceptibility to drought when coexist. 2. This paper analyses the resilience (resistance, recovery rate and recovery time) at individual-tree level using a network of tree-ring collections from 22 sites along a climatic gradient from central Europe to Scandinavia. We aimed to identify differences in growth following drought between the two species and between mixed and pure stands, and how environmental variables (climate, topography and site location) and tree characteristics influence them. 3. We found that both the timing and duration of drought drive the different responses between species and compositions. Norway spruce showed higher vulnerability to summer drought, with both lower resistance and a longer recovery time than Scots pine. Mixtures provided higher drought resistance for both species compared to pure stands, but the benefit decreases with the duration of the drought. Especially climate sensitive and old trees in climatically marginal sites were more affected by drought stress. 4. Synthesis. Promoting Scots pine and mixed forests is a promising strategy for adapting European forests to climate change. However, if future droughts become longer, the advantage of mixed stands could disappear which would be especially negative for Norway spruce.
Authors
Bertold Mariën Dimitri Papadimitriou Titta Kotilainen Paolo Zuccarini Inge Dox Melanie Verlinden Thilo Heinecke Joachim Mariën Patrick Willems Mieke Decoster Aina Gascó Holger Lange Josep Peñuelas Matteo CampioliAbstract
Accurate estimations of phenophases in deciduous trees are important to understand forest ecosystems and their feedback on the climate. In particular, the timing of leaf senescence is of fundamental importance to trees’ nutrient stoichiometry and drought tolerance and therefore to trees’ vigor and fecundity. Nevertheless, there is no integrated view on the significance, and direction, of seasonal trends in leaf senescence, especially for years characterized by extreme weather events. Difficulties in the acquisition and analyses of hierarchical data can account for this. We collected four years of chlorophyll content index (CCI) measurements in thirty-eight individuals of four deciduous tree species (Betula pendula, Fagus sylvatica, Populus tremula and Quercus robur) in Belgium, Norway and Spain, and analyzed these data using generalized additive models for location, scale and shape (GAMLSS). As a result, (I) the phenological strategy and seasonal trend of leaf senescence in these tree species could be clarified for exceptionally dry and warm years, and (II) the daily average (air) temperature, global radiation, and vapor pressure deficit could be established as main drivers behind the variation in the timing of the senescence transition date. Our results show that the onset of the re-organization phase in the leaf senescence, which we approximated and defined as local minima in the second derivative of a CCI graph, was in all species mainly negatively affected by the average temperature, global radiation and vapor pressure deficit. All together the variables explained 89 to 98% of the variability in the leaf senescence timing. An additional finding is that the generalized beta type 2 and generalized gamma distributions are well suited to model the chlorophyll content index, while the senescence transition date can be modeled using the normal-exponential-student-t, generalized gamma and zero-inflated Box-Cox Cole and Green distributions for beech, oak and birch, and poplar, respectively.
Authors
Ola FlatenAbstract
Norwegian sheep production is based on the use of free outfield grazing resources in the mountains and forests in summer. Lamb prices are strongest at the beginning of the slaughter season in August and then begin to gradually decline, reaching a lower plateau in mid-October. Seasonal pricing provides incentives to get slaughter lambs to market early. The objective of this study was to examine how outfield summer pasture quality, time of collection from the outfields, and inclusion of annual forage crops in the diet of finishing lambs influence optimal farm plans and profitability in Norwegian forage-based sheep production systems at varying levels of farmland availability (varying from 15 to 25 ha with 20 ha as the basis). A linear programming model was developed for sheep production systems in the mountainous areas of Southern Norway. Input-output relationships incorporated into the model included data from field experiments with grasses for annual and perennial use, observed performance of lambs and ewes at pastures, a feed planning tool for the indoor season, and expert judgements. The model maximised total gross margin of farms with a housing capacity of 200 ewes. The results suggested that with more land available, drafting older and heavier lambs for slaughter was profitable. The lighter lambs at weaning were usually drafted much later and at the same or heavier carcass weights than the heavy lambs at weaning because of seasonal pricing. Higher quality outfield summer pastures increased lamb live weights at weaning. Annual profits improved considerably with rich summer pastures compared to poor summer pastures. Early collection was always less profitable than normal time of collection because greater prices for lambs sold could not offset losses from the additional feed costs incurred and a possibly smaller flock. Speeding up the growth rate of finishing lambs by offering annual forage crops in addition to grazed grass was usually more profitable than grass only. Only for rich summer pastures and normal time of collection at low land availability was use of annual forage crops unprofitable.
Authors
Elisa Senger Sonia Osorio Klaus Olbricht Paul Shaw Béatrice Denoyes Jahn Davik Stefano Predieri Saila Karhu Sebastian Raubach Nico Lippi Monika Höfer Helen Cockerton Christophe Pradal Ebru Kafkas Suzanne Litthauer Iraida Amaya Björn Usadel Bruno MezzettiAbstract
No abstract has been registered
Authors
Stephan Hoffmann Marian Schönauer Joachim Heppelmann Antti Asikainen Emmanuel Cacot Benno Eberhard Hubert Hasenauer Janis Ivanovs Dirk Jaeger Andis Lazdins Sima Mohtashami Tadeusz Moskalik Tomas Nordfjell Krzysztof Stereńczak Bruce Talbot Jori Uusitalo Morgan Vuillermoz Rasmus AstrupAbstract
Purpose of Review Mechanized logging operations with ground-based equipment commonly represent European production forestry but are well-known to potentially cause soil impacts through various forms of soil disturbances, especially on wet soils with low bearing capacity. In times of changing climate, with shorter periods of frozen soils, heavy rain fall events in spring and autumn and frequent needs for salvage logging, forestry stakeholders face increasingly unfavourable conditions to conduct low-impact operations. Thus, more than ever, planning tools such as trafficability maps are required to ensure efficient forest operations at reduced environmental impact. This paper aims to describe the status quo of existence and implementation of such tools applied in forest operations across Europe. In addition, focus is given to the availability and accessibility of data relevant for such predictions. Recent Findings A commonly identified method to support the planning and execution of machine-based operations is given by the prediction of areas with low bearing capacity due to wet soil conditions. Both the topographic wetness index (TWI) and the depth-to-water algorithm (DTW) are used to identify wet areas and to produce trafficability maps, based on spatial information. Summary The required input data is commonly available among governmental institutions and in some countries already further processed to have topography-derived trafficability maps and respective enabling technologies at hand. Particularly the Nordic countries are ahead within this process and currently pave the way to further transfer static trafficability maps into dynamic ones, including additional site-specific information received from detailed forest inventories. Yet, it is hoped that a broader adoption of these information by forest managers throughout Europe will take place to enhance sustainable forest operations.
Authors
Raghuram Badmi Torstein Tengs May Bente Brurberg Abdelhameed Elameen Yupeng Zhang Lisa Karine Haugland Carl Gunnar Fossdal Timo Hytönen Paal Krokene Tage ThorstensenAbstract
Grey mold caused by the necrotrophic fungal pathogen Botrytis cinerea can affect leaves, flowers, and berries of strawberry, causing severe pre- and postharvest damage. The defense elicitor β-aminobutyric acid (BABA) is reported to induce resistance against B. cinerea and many other pathogens in several crop plants. Surprisingly, BABA soil drench of woodland strawberry (Fragaria vesca) plants two days before B. cinerea inoculation caused increased infection in leaf tissues, suggesting that BABA induce systemic susceptibility in F. vesca. To understand the molecular mechanisms involved in B. cinerea susceptibility in leaves of F. vesca plants soil drenched with BABA, we used RNA sequencing to characterize the transcriptional reprogramming 24 h post-inoculation. The number of differentially expressed genes (DEGs) in infected vs. uninfected leaf tissue in BABA-treated plants was 5205 (2237 upregulated and 2968 downregulated). Upregulated genes were involved in pathogen recognition, defense response signaling, and biosynthesis of secondary metabolites (terpenoid and phenylpropanoid pathways), while downregulated genes were involved in photosynthesis and response to auxin. In control plants not treated with BABA, we found a total of 5300 DEGs (2461 upregulated and 2839 downregulated) after infection. Most of these corresponded to those in infected leaves of BABA-treated plants but a small subset of DEGs, including genes involved in ‘response to biologic stimulus‘, ‘photosynthesis‘ and ‘chlorophyll biosynthesis and metabolism’, differed significantly between treatments and could play a role in the induced susceptibility of BABA-treated plants.