Steffan Lloyd
Forsker
Biografi
Steffan Lloyd mottok B.Eng.-graden i maskinteknikk i 2015 fra Carleton University i Ottawa, Canada. Han fortsatte med å motta doktorgraden fra den samme institusjonen i 2023, også i maskinteknikk. Hans doktorgradsforskning fokuserte på optimalisering, design og kontroll for automatisk presisjonsrobotbearbeiding. Tidligere jobbet Steffan som mekanisk designer på romfartsrobotikkselskapet Advanced Integration Technologies (AIT) i Umeå, Sverige (2016 til 2018). Han jobbet også som teknisk leder for robotoppstartsfirmaet MAE Robotics i Ottawa, Canada (2021 til 2023), hvor han overvåket utviklingen av nyskapende robotsystemer for ekstreme miljøer. Steffans nåværende forskning er på nyskapende robotdesign-, planlegging- og kartleggingsapplikasjoner innenfor den norske skogbruksindustrien.
Sammendrag
This article presents a novel, ultralight tree planting mechanism for use on an aerial vehicle. Current tree planting operations are typically performed manually, and existing automated solutions use large land-based vehicles or excavators which cause significant site damage and are limited to open, clear-cut plots. Our device uses a high-pressure compressed air power system and a novel double-telescoping design to achieve a weight of only 8 kg: well within the payload capacity of medium to large drones. This article describes the functionality and key components of the device and validates its feasibility through experimental testing. We propose this mechanism as a cost-effective, highly scalable solution that avoids ground damage, produces minimal emissions, and can operate equally well on open clear-cut sites as in denser, selectively-harvested forests.
Sammendrag
This article presents SkyPlanter, the first drone-based system for aerial reforestation with tree seedlings. Traditional tree planting is labor-intensive, physically demanding, and expensive—making it ideal for automation. Current mechanized solutions depend on large, heavy, ground-based excavator-based solutions best suited for extensive clear-cuts, but which struggle on steep or uneven terrain, and carry prohibitive relocation costs for smaller operations. SkyPlanter is a drone-mounted seedling-planting system that enables it to easily traverse rugged or steep terrain while remaining inexpensive, easily transported, and highly scalable. It uses an ultra-lightweight compressed air planting mechanism that inserts seedlings and compacts the surrounding soil. Its innovative double-telescoping design reduces vehicle weight to 15.2 kg (without batteries) or 16.4–20.8 kg (with batteries, depending on flight duration). This article details the system’s novel planting and ground compression mechanisms, its unique high-pressure pneumatic power systems, and its custom quadrotor carrier drone. We demonstrate its feasibility in the first-ever aerial seedling-planting tests in a forest environment. The system is proposed as a cost-effective, scalable reforestation solution with high automation potential.
Sammendrag
Det er ikke registrert sammendrag

Divisjon for skog og utmark
SPADE: Multi-purpose physical-cyber agri-forest drones ecosystem for governance and environmental observation
The strategic objective of SPADE project is to develop an intelligent ecosystem to address the multiple purposes concept in the light of deploying unmanned aerial vehicles (UAVs alias drones) to promote sustainable digital services for the benefit of a large scope of end users in sectors of crop production, forestry, and livestock. This includes individual UAV usability, UAV type applicability (e.g., swarm, collaborative, autonomous, tethered), UAV governance models availability and UAV-generated data trustworthiness.

Divisjon for skog og utmark
Lukkede hogster: Konsekvenser for produksjon, økonomi og biomangfold
Hovedmålet til prosjektet er å bygge kunnskap og kompetanse om hvordan en omlegging av norsk skogbruk, fra flatehogst til mer bruk av lukkede hogster, vil påvirke produksjon, økonomi og biologisk mangfold.

Divisjon for skog og utmark
SFI SmartForest: Bringing Industry 4.0 to the Norwegian forest sector
SmartForest will position the Norwegian forest sector at the forefront of digitalization resulting in large efficiency gains in the forest sector, increased production, reduced environmental impacts, and significant climate benefits. SmartForest will result in a series of innovations and be the catalyst for an internationally competitive forest-tech sector in Norway. The fundamental components for achieving this are in place; a unified and committed forest sector, a leading R&D environment, and a series of progressive data and technology companies.