Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2025
Authors
Jarkko Hantula Malin Elfstrand Anne-Maarit Hekkala Ari Hietala Juha Honkaniemi Maartje Klapwijk Matti Koivula Juho Matala Jonas Rönnberg Juha Siitonen Fredrik WidemoAbstract
No abstract has been registered
2024
Abstract
No abstract has been registered
Authors
Ari Hietala Wilson Lara Henao André Kolsgaard Simon Seljegard Nina Elisabeth Nagy Isabella Børja Tor Arne Justad Yngve Rekdal Even Bergseng Halvor SolheimAbstract
No abstract has been registered
2023
Abstract
Purpose of Review Forestry in northern temperate and boreal regions relies heavily on conifers. Rapid climate change and associated increases in adverse growing conditions predispose conifers to pathogens and pests. The much longer generation time and presumably, therefore, lower adaptive capacity of conifers relative to their native or non-native biotic stressors may have devastating consequences. We provide an updated overview of conifer defences underlying pathogen and pest resistance and discuss how defence traits can be used in tree breeding and forest management to improve resistance. Recent Findings Breeding of more resilient and stress-resistant trees will benefit from new genomic tools, such as genotyping arrays with increased genomic coverage, which will aid in genomic and relationship-based selection strategies. However, to successfully increase the resilience of conifer forests, improved genetic materials from breeding programs must be combined with more flexible and site-specific adaptive forest management. Summary Successful breeding programs to improve conifer resistance to pathogens and pests provide hope as well as valuable lessons: with a coordinated and sustained effort, increased resistance can be achieved. However, mechanisms underlying resistance against one stressor, even if involving many genes, may not provide any protection against other sympatric stressors. To maintain the adaptive capacity of conifer forests, it is important to keep high genetic diversity in the tree breeding programs. Choosing forest management options that include diversification of tree-species and forest structure and are coupled with the use of genetically improved plants and assisted migration is a proactive measure to increase forest resistance and resilience to foreseen and unanticipated biotic stressors in a changing climate.
Authors
Chatchai Kosawang Isabella Børja Maria-Luz Herrero Nina Elisabeth Nagy Lene R. Nielsen Halvor Solheim Volkmar Timmermann Ari HietalaAbstract
No abstract has been registered
Abstract
No abstract has been registered
2022
Abstract
No abstract has been registered
Authors
Ari Hietala Ahto Agan Nina Elisabeth Nagy Isabella Børja Volkmar Timmermann Rein Drenkhan Halvor SolheimAbstract
No abstract has been registered
Abstract
Bacterial diseases in woody plants are best characterized for ornamental and fruit trees and much less is known for forest trees. There are many diseases of forest trees whose etiology remains to be clarified and likely more bacterial diseases of forest trees will be discovered in the next years. An overview of the main bacterial pathogens that cause diseases in forest and ornamental trees is described in this chapter and the general differences between fungal and bacterial diseases are outlined. For bacteria pathogenic to trees, six types of diseases are described: Bacterial blight diseases, represented by Erwinia amylovora, the fireblight disease; Bacterial wilt disease, represented by Ralstonia solanacearum species complex; Root and stem galls of trees, represented by Agrobacterium tumefaciens; Wetwood disease, caused by several bacterial genera like Clostridium, Bacillus, Enterobacter, Klebsiella, and Pseudomonas, Xanthomonas and Pantoea; Bacterial scorch disease represented by Xylella fastidiosa with all its subspecies; Bacterial canker represented by Pseudomonas syringae with all its pathovars. Finally, the current diagnostic methods and specific issues related to bacteria detection, together with the main results of the scientific efforts and challenges in the genetic breeding to increase bacterial resistance of trees, are outlined.
Abstract
No abstract has been registered