Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

Purpose of Review Forestry in northern temperate and boreal regions relies heavily on conifers. Rapid climate change and associated increases in adverse growing conditions predispose conifers to pathogens and pests. The much longer generation time and presumably, therefore, lower adaptive capacity of conifers relative to their native or non-native biotic stressors may have devastating consequences. We provide an updated overview of conifer defences underlying pathogen and pest resistance and discuss how defence traits can be used in tree breeding and forest management to improve resistance. Recent Findings Breeding of more resilient and stress-resistant trees will benefit from new genomic tools, such as genotyping arrays with increased genomic coverage, which will aid in genomic and relationship-based selection strategies. However, to successfully increase the resilience of conifer forests, improved genetic materials from breeding programs must be combined with more flexible and site-specific adaptive forest management. Summary Successful breeding programs to improve conifer resistance to pathogens and pests provide hope as well as valuable lessons: with a coordinated and sustained effort, increased resistance can be achieved. However, mechanisms underlying resistance against one stressor, even if involving many genes, may not provide any protection against other sympatric stressors. To maintain the adaptive capacity of conifer forests, it is important to keep high genetic diversity in the tree breeding programs. Choosing forest management options that include diversification of tree-species and forest structure and are coupled with the use of genetically improved plants and assisted migration is a proactive measure to increase forest resistance and resilience to foreseen and unanticipated biotic stressors in a changing climate.

Abstract

Key message We studied size distributions of decay-affected Norway spruce trees using cut-to-length harvester data. The harvester data comprised tree-level decay and decay severity recordings from 101 final felling stands, which enabled to analyze relationships between size distributions of all and decay-affected trees. Distribution matching technique was used to transfer the size distribution of all trees into the diameter at breast height (DBH) distribution of decay-affected trees. Context Stem decay of Norway spruce (Picea abies [L.] Karst.) results in large economic losses in timber production in the northern hemisphere. Forest management planning typically requires information on tree size distributions. However, size distributions of decay-affected trees generally remain unknown impeding decision-making in forest management planning. Aims Our aim was to analyze and model relationships between size distributions of all and decay-affected Norway spruce trees at the level of forest stands. Methods Cut-to-length harvester data of 93,456 trees were collected from 101 final felling stands in Norway. For each Norway spruce tree (94% of trees), the presence and severity of stem decay (incipient and advanced) were recorded. The stand-level size distributions (diameter at breast height, DBH; height, H) of all and decay-affected trees were described using the Weibull distribution. We proposed distribution matching (DM) models that transform either the DBH or H distribution of all trees into DBH distributions of decay-affected trees. We compared the predictive performance of DMs with a null-model that refers to a global Weibull distribution estimated based on DBHs of all harvested decay-affected trees. Results The harvester data showed that an average-sized decay-affected tree is larger and taller compared with an average-sized tree in a forest stand, while trees with advanced decay were generally shorter and thinner compared with trees having incipient decay. DBH distributions of decay-affected trees can be matched with smaller error index (EI) values using DBH (EI = 0.14) than H distributions (EI = 0.31). DM clearly outperformed the null model that resulted in an EI of 0.32. Conclusions The harvester data analysis showed a relationship between size distributions of all and decay-affected trees that can be explained by the spread biology of decay fungi and modeled using the DM technique. Keywords Root and butt rot, Heterobasidion spp., Armillaria spp., Cut-to-length harvester, Forest management and planning

To document

Abstract

Introduction: The ascomycete Hymenoscyphus fraxineus, originating from Asia, is currently threatening common ash (Fraxinus excelsior) in Europe, massive ascospore production from the saprotrophic phase being a key determinant of its invasiveness. Methods: To consider whether fungal diversity and succession in decomposing leaf litter are affected by this invader, we used ITS-1 metabarcoding to profile changes in fungal community composition during overwintering. The subjected ash leaf petioles, collected from a diseased forest and a healthy ash stand hosting the harmless ash endophyte Hymenoscyphus albidus, were incubated in the forest floor of the diseased stand between October 2017 and June 2018 and harvested at 2–3-month intervals. Results: Total fungal DNA level showed a 3-fold increase during overwintering as estimated by FungiQuant qPCR. Petioles from the healthy site showed pronounced changes during overwintering; ascomycetes of the class Dothideomycetes were predominant after leaf shed, but the basidiomycete genus Mycena (class Agaricomycetes) became predominant by April, whereas H. albidus showed low prevalence. Petioles from the diseased site showed little change during overwintering; H. fraxineus was predominant, while Mycena spp. showed increased read proportion by June. Discussion: The low species richness and evenness in petioles from the diseased site in comparison to petioles from the healthy site were obviously related to tremendous infection pressure of H. fraxineus in diseased forests. Changes in leaf litter quality, owing to accumulation of host defense phenolics in the pathogen challenged leaves, and strong saprophytic competence of H. fraxineus are other factors that probably influence fungal succession. For additional comparison, we examined fungal community structure in petioles collected in the healthy stand in August 2013 and showing H. albidus ascomata. This species was similarly predominant in these petioles as H. fraxineus was in petioles from the diseased site, suggesting that both fungi have similar suppressive effects on fungal richness in petiole/rachis segments they have secured for completion of their life cycle. However, the ability of H. fraxineus to secure the entire leaf nerve system in diseased forests, in opposite to H. albidus, impacts the general diversity and successional trajectory of fungi in decomposing ash petioles.

2022

To document

Abstract

Pathogenic wood decay fungi such as species of Heterobasidion are some of the most serious forest pathogens in Europe, causing rot of tree boles and loss of growth, with estimated economic losses of eight hundred million euros per year. In conifers with low resinous heartwood such as species of Picea and Abies, these fungi are commonly confined to heartwood and thus external infection signs on the bark or foliage of trees are normally absent. Consequently, determining the extent of disease presence in a forest stand with field surveys is not practical for guiding forest management decisions such as optimal rotation time. Remote sensing technologies such as airborne laser scanning and aerial imagery are already used to reduce the reliance on fieldwork in forest inventories. This study aimed to use remote sensing to detect rot in spruce (Picea abies L. Karst.) forests in Norway. An airborne hyperspectral imager provided information for classifying the presence or absence of rot in a single-tree-based framework. Ground reference data showing the presence of rot were collected by harvest machine operators during the harvest of forest stands. Random forest and support vector machine algorithms were used to classify the presence and absence of rot. Results indicate a 64% overall classification accuracy for presence-absence classification of rot, although additional work remains to make the classifications usable for practical forest management.

To document

Abstract

Some common ash trees (Fraxinus excelsior) show tolerance towards shoot dieback caused by the invasive ascomycete Hymenoscyphus fraxineus. Leaf petioles are considered to serve as a pathogen colonization route to the shoots. We compared four common ash clones with variation in disease tolerance, and included the native host, Manchurian ash (Fraxinus mandshurica), as a reference. Tissue colonization, following rachis inoculation by H. fraxineus, was monitored by histochemical observations and a quantitative polymerase chain reaction (qPCR) assay specific to H. fraxineus. Axial spread of the pathogen towards the petiole base occurred primarily within the phloem and parenchyma, tissues rich in starch in healthy petioles. In inoculated petioles, a high content of phenolics surrounded the hyphae, presumably a host defense response. There was a relationship between field performance and susceptibility to leaf infection in three of the four studied common ash clones, i.e., good field performance was associated with a low petiole colonization level and vice versa. Low susceptibility to leaf infection may counteract leaf-to-shoot spread of the pathogen in common ash, but the limited number of clones studied warrants caution and a larger study. The Manchurian ash clone had the highest petiole colonization level, which may suggest that this native host has evolved additional mechanisms to avoid shoot infection.

Abstract

Bacterial diseases in woody plants are best characterized for ornamental and fruit trees and much less is known for forest trees. There are many diseases of forest trees whose etiology remains to be clarified and likely more bacterial diseases of forest trees will be discovered in the next years. An overview of the main bacterial pathogens that cause diseases in forest and ornamental trees is described in this chapter and the general differences between fungal and bacterial diseases are outlined. For bacteria pathogenic to trees, six types of diseases are described: Bacterial blight diseases, represented by Erwinia amylovora, the fireblight disease; Bacterial wilt disease, represented by Ralstonia solanacearum species complex; Root and stem galls of trees, represented by Agrobacterium tumefaciens; Wetwood disease, caused by several bacterial genera like Clostridium, Bacillus, Enterobacter, Klebsiella, and Pseudomonas, Xanthomonas and Pantoea; Bacterial scorch disease represented by Xylella fastidiosa with all its subspecies; Bacterial canker represented by Pseudomonas syringae with all its pathovars. Finally, the current diagnostic methods and specific issues related to bacteria detection, together with the main results of the scientific efforts and challenges in the genetic breeding to increase bacterial resistance of trees, are outlined.

To document

Abstract

Norway’s most common tree species, Picea abies (L.) Karst. (Norway spruce), is often infected with Heterobasidion parviporum Niemelä & Korhonen and Heterobasidion annosum (Fr.) Bref.. Because Pinus sylvestris L. (Scots pine) is less susceptible to rot, it is worth considering if converting rot-infested spruce stands to pine improves economic performance. We examined the economically optimal choice between planting Norway spruce and Scots pine for previously spruce-dominated clear-cut sites of different site indexes with initial rot levels varying from 0% to 100% of stumps on the site. While it is optimal to continue to plant Norway spruce in regions with low rot levels, shifting to Scots pine pays off when rot levels get higher. The threshold rot level for changing from Norway spruce to Scots pine increases with the site index. We present a case study demonstrating a practical method (“Precision forestry”) for determining the tree species in a stand at the pixel level when the stand is heterogeneous both in site indexes and rot levels. This method is consistent with the concept of Precision forestry, which aims to plan and execute site-specific forest management activities to improve the quality of wood products while minimising waste, increasing profits, and maintaining environmental quality. The material for the study includes data on rot levels and site indexes in 71 clear-cut stands. Compared to planting the entire stand with a single species, pixel-level optimised species selection increases the net present value in almost every stand, with average increase of approximately 6%.

Abstract

The populations of European ash and its harmless fungal associate Hymenoscyphus albidus are in decline owing to ash dieback caused by the invasive Hymenoscyphus fraxineus, a fungus that in its native range in Asia is a harmless leaf endophyte of local ash species. To clarify the behavior of H. albidus and its spatial and temporal niche overlap with the invasive relative, we used light microscopy, fungal species-specific qPCR assays, and PacBio long-read amplicon sequencing of the ITS1-5.8S-ITS2 region to examine fungal growth and species composition in attached leaves of European ash. The plant material was collected from a healthy stand in central Norway, where ash saplings in late autumn showed leaflet vein necrosis like that commonly related to H. fraxineus. For reference, leaflet samples were analyzed from stands with epidemic level of ash dieback in southeastern Norway and Estonia. While H. albidus was predominant in the necrotic veins in the healthy stand, H. fraxineus was predominant in the diseased stands. Otherwise, endophytes with pathogenic potential in the genera Venturia (anamorph Fusicladium), Mycosphaerella (anamorph Ramularia), and Phoma, and basidiomycetous yeasts formed the core leaflet mycobiome both in the healthy and diseased stands. In necrotic leaf areas with high levels of either H. albidus or H. fraxineus DNA, one common feature was the high colonization of sclerenchyma and phloem, a region from which the ascomata of both species arise. Our data suggest that H. albidus can induce necrosis in ash leaves, but that owing to low infection pressure, this first takes place in tissues weakened by autumn senescence, 1–2 months later in the season than what is characteristic of H. fraxineus at an epidemic phase of ash dieback. The most striking difference between these fungi would appear to be the high fecundity of H. fraxineus. The adaptation to a host that is phylogenetically closely related to European ash, a tree species with high occurrence frequency in Europe, and the presence of environmental conditions favorable to H. fraxineus life cycle completion in most years may enable the build-up of high infection pressure and challenge of leaf defense prior to autumn senescence.

Abstract

Tree defense against xylem pathogens involves both constitutive and induced phenylpropanoids and terpenoids. The induced defenses include compartmentalization of compromised wood with a reaction zone (RZ) characterized by polyphenol deposition, whereas the role of terpenoids has remained poorly understood. To further elucidate the tree–pathogen interaction, we profiled spatial patterns in lignan (low-molecular-weight polyphenols) and terpenoid content in Norway spruce (Picea abies) trees showing heartwood colonization by the pathogenic white-rot fungus Heterobasidion parviporum. There was pronounced variation in the amount and composition of lignans between different xylem tissue zones of diseased and healthy trees. Intact RZ at basal stem regions, where colonization is the oldest, showed the highest level and diversity of these compounds. The antioxidant properties of lignans obviously hinder oxidative degradation of wood: RZ with lignans removed by extraction showed significantly higher mass loss than unextracted RZ when subjected to Fenton degradation. The reduced diversity and amount of lignans in pathogen-compromised RZ and decaying heartwood in comparison to intact RZ and healthy heartwood suggest that α-conindendrin isomer is an intermediate metabolite in lignan decomposition by H. parviporum. Diterpenes and diterpene alcohols constituted above 90% of the terpenes detected in sapwood of healthy and diseased trees. A significant finding was that traumatic resin canals, predominated by monoterpenes, were commonly associated with RZ. The findings clarify the roles and fate of lignan during wood decay and raise questions about the potential roles of terpenoids in signal transduction, synthesis, and translocation of defense compounds upon wood compartmentalization against decay fungi.

2021