Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2016
Abstract
Nonylphenols (NP) are a group of alkylphenols, formed upon degradation of nonylphenol ethoxylates such as nonylphenol monoethoxylate (NP1EO) or nonylphenol diethoxylate (NP2EO), which have been broadly used as non-ionic surfactants. Both NP and their ethoxylates are often present in the sewage, despite being banned and substituted by less toxic alcohol ethoxylates in many countries. There is a number of degradation studies of nonylphenol in the soil environment, but there is a lack of understanding on how plants and soil organisms such as earthworms can affect the degradation. In our study, we investigated the degradation of 4-nonylphenol (4-NP) in a mineral field soil in the presence of barley (Hordeum vulgare) and earthworms (Aporrectodea caliginosa). Soil was spiked with 4-NP at a concentration of 12.5 mg kg-1 d.w. soil. Results showed that the degradation of 4-NP in soil was rapid during the 28 days after spiking, with remaining concentration of 0.397 mg kg-1 d.w. soil on day 28. Degradation was much slower between days 28 and 120, with a remaining concentration of 0.214 mg kg-1 d.w. soil on day 120. No significant difference in the degradation of 4-NP in the presence of either plants or worms was observed, but sampling after 28 days of exposure revealed transfer of 4-NP to worms (worm tissue concentration = 0.79 μg g-1), which increased with time (1.66 μg g-1 after 120 d). The calculated transfer factor after 28 (TF28) and 120 days (TF120) was 0.07 and 0.13 respectively. No toxicity or accumulation in plants was observed at the concentration tested herein. Concentration of 4-NP in the rhizosphere was not statistically different from that in the bulk soil.
Abstract
Shelf life of plum is limited by several factors, including development of fungal decay. In either one or two seasons, European plum cultivars were exposed to different applications of calcium or fungicide before harvest or left unsprayed. On the experimental trees, the yield was harvested as commercial practice, giving a sample of fruit with a range in maturity acceptable for sale. The yield was divided into two groups, less and more ripened fruit. Fruit samples from each group were stored for 10-14 days at 4°C followed by a simulated shelf life period of 2-3 days at 20°C. Fruit quality was assessed at harvest and after storage. Number of fruit with fungal decay was counted at the end of storage and after simulated shelf life. At harvest, the more ripened fruit had higher weight, soluble solids content, background and cover colour, and lower firmness in most of the experiments. Fruit from trees sprayed six times with calcium had higher weight in first year, but not in second, was less ripen as measured by colour and firmness on some cultivars, but not on others. Time of fungicide application had no effect on fruit quality at harvest. Differences in fruit quality at harvest were most often similar after storage. Fruit grouped as more mature at harvest developed more fungal decay after simulated shelf life than less mature fruit in five of eight experiments. In one out of six experiments calcium applications reduced development of postharvest fungal decay. Fungicide applications had no effect on postharvest fungal decay in either of four experiments. The present results indicate that the ripening degree of plum fruit is more important for development of fungal decay than preharvest applications of calcium or fungicides
Authors
Trond HofsvangAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Priit Tammeorg Ana Catarina Bastos Simon Jeffery Frédéric Rees Jürgen Kern Ellen R. Graber Maurizio Ventura Mark Kibblewhite António Amaro Alice Budai Cláudia M.d.S. Cordovil Xavier Domene Ciro Gardi Gabriel Gascó Jan Horak Claudia Kammann Elena Kondrlova David Laird Susana Loureiro Martinho A.S. Martins Pietro Panzacchi Munoo Prasad Marija Prodana Aline Peregrina Puga Greet Ruysschaert Lidia Sas-Paszt Flávio C. Silva Wenceslau Geraldes Teixeira Giustino Tonon Gemini Delle Vedove Costanza Zavalloni Bruno Glaser Frank G. A. VerheijenAbstract
Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar’s effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar’s contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.
Abstract
submittedVersion
Abstract
No abstract has been registered
Abstract
No abstract has been registered