Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2016
Authors
V. E. Kutschera C. Frosch A. Janke K. Skirnisson T. Bidon N. Lecomte S. R. Fain Hans Geir Eiken Snorre Hagen U. Arnason K. L. Laidre C. Nowak F. HailerAbstract
Projections by the Intergovernmental Panel on Climate Change (IPCC) and sea ice forecasts suggest that Arctic sea ice will decline markedly in coming decades. Expected effects on the entire ecosystem include a contraction of suitable polar bear habitat into one or few refugia. Such large-scale habitat decline and fragmentation could lead to reduced genetic diversity. Here we compare genetic variability of four vagrant polar bears that reached Iceland with that in recognized subpopulations from across the range, examining 23 autosomal microsatellites, mitochondrial control region sequences and Y-chromosomal markers. The vagrants' genotypes grouped with different genetic clusters and showed similar genetic variability at autosomal microsatellites (expected heterozygosity, allelic richness, and individual heterozygosity) as individuals in recognized subpopulations. Each vagrant carried a different mitochondrial haplotype. A likely route for polar bears to reach Iceland is via Fram Strait, a major gateway for the physical exportation of sea ice from the Arctic basin. Vagrant polar bears on Iceland likely originated from more than one recognized subpopulation, and may have been caught in sea ice export during long-distance movements to the East Greenland area. Although their potentially diverse geographic origins might suggest that these vagrants encompass much higher genetic variability than vagrants or dispersers in other regions, the four Icelandic vagrants encompassed similar genetic variability as any four randomly picked individuals from a single subpopulation or from the entire sample. We suggest that this is a consequence of the low overall genetic variability and weak range-wide genetic structuring of polar bears – few dispersers can represent a large portion of the species' gene pool. As predicted by theory and our demographic simulations, continued gene flow will be necessary to counteract loss of genetic variability in increasingly fragmented Arctic habitats. Similar considerations will be important in the management of other taxa that utilize sea ice habitats.
Abstract
Oidium neolycopersici, the cause of powdery mildew in tomato, was exposed to UV radiation from 250 to 400 nm for 1, 12, or 24 min. Radiation ≤ 280 nm strongly reduced conidial germination, hyphal expansion, penetration attempt and infection of O. neolycopersici. From 290 to 310 nm the effect depended on duration of exposure, while there was no effect ≥310 nm. There were no significant differences within the effective UV range (250–280 nm). Conidial germination on a water agar surface was b20% or around 40%, respectively, if samples were exposed for 1 min within the effective UV range followed by 24 h or 48 h incubation. Twelve or 24 min exposure reduced germination to close to nil. A similar trend occurred for germination of conidia on leaf disks on water agar in Petri dishes. The effective UV range significantly reduced all subsequent developmental stages of O. neolycopersici. There was no cytoplasmic mitochondrial streaming in conidia exposed to the effective UV range, indicating that there may be a direct effect via cell cycle arrest. There was no indication of reactive oxygen species involvement in UV mediated inhibition of O. neolycopersici. Optical properties of O. neolycopersici indicat- ed that the relative absorption of UV was high within the range of 250 to 320 nm, and very low within the range of 340 to 400 nm. Identification of UV wavelengths effective against O. neolycopersici provides a future basis for precise disease control.
Abstract
Ventilation management and the tuber maturity at harvest are essential factors in maintaining potato quality during long-term storage. The aim of this study was to examine the effect of ventilation strategy on storage quality of potato tubers with three different maturity levels at harvest. Two potato cultivars, Saturna and Asterix, were stored in small-scale experimental stores and large-scale commercial stores. Both storage categories were ventilated by both low continuous air rates (natural ventilation) and intermittent high air rates (forced ventilation). The different maturity levels were obtained by a combination of pre-sprouting strategy, planting date and level of nitrogen fertilization of the seed tubers, where pre-sprouting, early planting date and low amount of nitrogen resulted in the most mature tubers. Storage quality parameters investigated during and after long-term storage (6 months in small-scale and 4 months in large-scale stores) included weight loss, respiration, dry matter, sucrose, glucose/fructose content and fry colour. In average over three years natural ventilation resulted in higher weight losses in small- and large-scale stores (1.36 and 3.93%), lower content of reducing sugars (glucose + fructose) in large-scale stores (2.35 mg g 1) and lighter fry colour than did forced ventilation. Immature potatoes had higher weight losses (4.16%), higher respiration rates (1.68 mg CO2 kg 1 h 1) and lower dry matter content (22.3–22.5%) than more mature potatoes. This study show that both maturity and ventilation strategy affects storage quality of potatoes as measured by weight loss, sugar content and fry colour.
Abstract
Glucosinolates are plant secondary metabolites with important roles in plant defence against pathogens and pests and are also known for their health benefits. Understanding how environmental factors affect the level and composition of glucosinolates is therefore of importance in the perspective of climate change. In this study we analysed glucosinolates in Arabidopsis thaliana accessions when grown at constant standard (21 °C), moderate (15 °C) and low (9 °C) temperatures during three generations. In most of the tested accessions moderate and pronounced chilling temperatures led to higher levels of glucosinolates, especially aliphatic glucosinolates. Which temperature yielded the highest glucosinolate levels was accession-dependent. Transcriptional profiling revealed also accession-specific gene responses, but only a limited correlation between changes in glucosinolate-related gene expression and glucosinolate levels. Different growth temperatures in one generation did not consistently affect glucosinolate composition in subsequent generations, hence a clear transgenerational effect of temperature on glucosinolates was not observed.
Abstract
No abstract has been registered
Authors
ChoCho Htay Huan Peng Wenkun Huang Lingan Kong Wenting He Ricardo Holgado Deliang PengAbstract
The root-knot nematode Meloidogyne graminicola is a major constraint in rice production in the world. Using rDNA-ITS sequences data alignments, the genetic variation among twenty-one populations of M. graminicola (sixteen from Myanmar and five from China) was investigated. The results showed that all the populations were clearly separated from other species and that there was a low level of genetic variation among the isolates. A set of species-specific primers was designed to develop a species-specific molecular tool for the precise identification of M. graminicola. The primer reliability, specificity and sensitivity tests showed that the primer set (Mg-F3 and Mg-R2) amplified the expected fragment size of 369 bp from the template DNA of target nematode populations but not from non-target organisms. A duplex PCR test allows for saving diagnostic time and costs by amplifying the species of interest from a nematode mixture. Therefore, this species-specific primer set may be a powerful tool to improve taxonomic identification by non-specialists and the design of successful management practices as well.
Authors
Helen E Roy Peter M J Brown Tim Adriaens Nick Berkvens Isabel Borges Susana Clusella-Trullas Richard F Comont Patrick De Clercq Rene Eschen Arnaud Estoup Edward W Evans Benoit Facon Mary M Gardiner Artur Gil Audrey A Grez Thomas Guillemaud Danny Haelewaters Annette Herz Alois Honek Andy G Howe Cang Hui William D Hutchison Marc Kenis Robert L Koch Jan Kulfan Lori Lawson Handley Eric Lombaert Antoon Loomans John Losey Alexander O Lukashuk Dirk Maes Alexandra Magro Katie M Murray Gilles San Martin Zdenka Martinkova Ingrid A Minnaar Oldrich Nedved Marina J Orlova-Bienkowskaja Naoya Osawa Wolfgang Rabitsch Hans Peter Ravn Gabriele Rondoni Steph L Rorke Sergey K Ryndevich May Sæthre John J Sloggett Antonio Onofre Soares Riaan Stals Matthew C Tinsley Axel Vandereycken Paul van Wielink Sandra Viglasova Peter Zach Ilya A Zakharov Tania Zaviezo Zihua ZhaoAbstract
The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people.
Authors
Mirzaman Zamanzadeh Live Heldal Hagen Kine Svensson Roar Linjordet Svein Jarle HornAbstract
No abstract has been registered
Authors
Shiori Koga Ulrike Böcker Anne Kjersti Uhlen Bernt Hoel Anette Aamodt MoldestadAbstract
Unstable breadmaking quality of wheat due to environmental influence has been a problem for Norwegian milling industries. Large variation in gluten quality was observed from field trials with Norwegian winter wheat conducted in several locations between 2005 and 2013. Moreover, extremely poor gluten quality was observed in several locations in the 2007 and 2011 season, and indicated almost complete loss of breadmaking quality. To investigate the environmental factors which cause extremely weak gluten, gluten proteins were characterized in samples selected within the 2011 season. The results revealed that the proportion of large glutenin polymers decreased in wheat samples with extremely weak gluten. Moreover, re-polymerization of large glutenin polymers, which normally occur during the resting period of a dough, did not take place in gluten prepared from these samples. Incubation of total proteins extracted from these samples in an in vitro system showed a drastic degradation of gluten proteins indicating protease activities. The origin of the proteases remains unclear; however, exogenous proteases derived from Fusarium spp. seem to play a key role for protein degradation, and thus causing severe quality deficiency. A genotypic difference was found between the two cultivars and one of them had higher resistance against the factors influencing gluten quality in negative way.
Authors
Thibaud Decaëns David Porco Samuel W. James George G. Brown Vincent Chassany Florence Dubs Lise Dupont Emmanuel Lapied Rodolphe Rougerie Jean-Pierre Rossi Virginie RoyAbstract
No abstract has been registered