Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Abstract
Plants are exposed to various pathogens in their environment and have developed immune systems with multiple layers of defence to fight-back. However, often pathogens overcome the resistance barriers, infect the plants to cause the disease. Pathogens that cause diseases on economically important crop plants like strawberry incur huge losses to the agriculture industry. For example, The 2016 outbreak of strawberry grey mould (Botrytis cinerea) in Norway caused up to 95% crop losses. Outbreaks like this underline the importance of developing novel and sustainable tools to combat plant diseases, for example by increasing the plants’ natural disease resistance. Priming plant defences using chemical elicitors may be effective in providing the enhanced resistance against multiple pathogens. We have used β-aminobutyric acid (BABA) as a chemical priming agent to induce resistance in Fragaria vesca against Botrytis cinerea. Effects of BABA on disease progression and defence responses of Fragaria are being characterized using molecular tools like RNAseq, RT-PCR and ChIP. As priming chemicals may induce an epigenetic memory in treated plants, we also plan to study the histone methylation patterns in primed plants and the genes that are regulated. Our long-term aim is to understand the duration of the epigenetic memory and its cross-generational transmission to the progeny in Fragaria. Our results will help guide various crop protection strategies in addition to providing new insights to develop novel tools for plant disease management.
Authors
Arne StensvandEditors
Cheryl Lennox Marcel Wenneker Inga Morocko-Bicevska Regina RancaneAbstract
No abstract has been registered
Abstract
Four lab scale biogas reactors fed with a substrate composition of ensiled fish waste and manure fixed at 13 and 87 vol %, respectively, were operated with HRTs of 20, 25, 30 and 40 days. Biogas process performance and stability were evaluated with regard to CH4 yields, NH4+ accumulation and abundance of NH4+-tolerant microorganisms. Process performance in the reactors operated at different HRTs were compared to process performance in reactors operated with constant HRT, fed with increased ratios of fish waste. The process performance and microbial dynamics were stable in reactors operated at constant amount of fish waste in the feed and with different HRTs. In the reactors added elevated ratios of fish waste, the concentration of NH4+ and abundance of NH4+-tolerant acetate oxidizing bacteria increased. The biogas process failed in these reactors simultaneously with an observed shift in microbial composition. In particular, the bacterium Tepidanaerobacter Acetatoxydans seemed to affect the biogas process stability. The hydrogenotrophic Methanomicrobiales increased in abundance in response to higher fish waste loading and NH4+ concentrations. This study showed that at a loading of 13% fish waste, it is possible to decrease the HRT from 30 to 20 days without markedly inhibiting the process stability.
Authors
Inga Marie Aasen Ingrid Sandbakken Rasa Slizyte Michael Roleda Jorunn Skjermo Åshild KrogdahlAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Ola FlatenAbstract
No abstract has been registered
Authors
Andre van Eerde Johanna Gottschamel Ralph Bock Kristine Eraker Aasland Hansen Hetron Mweemba Munangandu Henry Daniell Jihong Liu ClarkeAbstract
Dengue fever is a mosquito (Aedes aegypti) ‐transmitted viral disease that is endemic in more than 125 countries around the world. There are four serotypes of the dengue virus (DENV 1‐4) and a safe and effective dengue vaccine must provide protection against all four serotypes. To date, the first vaccine, Dengvaxia (CYD‐TDV), is available after many decades’ efforts, but only has moderate efficacy. More effective and affordable vaccines are hence required. Plants offer promising vaccine production platforms and food crops offer additional advantages for the production of edible human and animal vaccines, thus eliminating the need for expensive fermentation, purification, cold storage and sterile delivery. Oral vaccines can elicit humoral and cellular immunity via both the mucosal and humoral immune systems. Here, we report the production of tetravalent EDIII antigen (EDIII‐1‐4) in stably transformed lettuce chloroplasts. Transplastomic EDIII‐1‐4‐expressing lettuce lines were obtained and homoplasmy was verified by Southern blot analysis. Expression of EDIII‐1‐4 antigens was demonstrated by immunoblotting, with the EDIII‐1‐4 antigen accumulating to 3.45% of the total protein content. Immunological assays in rabbits showed immunogenicity of EDIII‐1‐4. Our in vitro gastrointestinal digestion analysis revealed that EDIII‐1‐4 antigens are well protected when passing through the oral and gastric digestion phases but underwent degradation during the intestinal phase. Our results demonstrate that lettuce chloroplast engineering is a promising approach for future production of an affordable oral dengue vaccine.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered