Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

Abstract

With regard to the rapidly growing world population, microalgae can be regarded as one of the most promising resources for the sustainable supply of commodities for food and feed applications. Although the use of commercial microalgae for food has been mainly limited to dietary supplements, the recent development of more cost-effective production technology makes it feasible to explore various other food applications. In the project ALGAE TO FUTURE, funded by the Norwegian Research Council, we have developed a consortium of 20 research and industry partners to approach this topic from multiple angles merging multiple research fields. The Vision is to contribute towards a viable Norwegian microalgae industry within 10 years. The focus of the research is on bioprocess developments linked to lipids, carbohydrates and proteins, where cultivation conditions are used to obtain microalgae biomass with specific nutrient composition targeting specific products, without use of GMO. We have chosen to target the development of 3 example products, namely bread, beer and aquaculture feed, that will be produced in a commercial context towards the end of the project. These case studies have been chosen in order to demonstrate the use of algal biomass from various algae species with highly different nutrient composition suitable for different products. The project combines expertise on algae cultivation and optimisation at lab and pilot scales, fish feeding technology, biorefining, bioeconomy, baking technology, broadcast journalism and animation, food quality and safety with the experience of innovative farmer entrepreneurs, professional bakers, brewers and fish-feed producers in a cross-disciplinary manner.

To document

Abstract

The potential of seaweeds as alternative protein source was investigated in relation to their amino acid (AA) profiles and the ruminal and total tract digestibility of these AAs. Three red (Mastocarpus stellatus, Palmaria palmata, and Porphyra sp.), four brown (Alaria esculenta, Laminaria digitata, Pelvetia canaliculata, and Saccharina latissima), and two green (Cladophora rupestris. and Ulva sp.) seaweed species were used in this study (hereafter, referred to by Genus name only). All seaweeds were collected in Bodø, Northern Norway, during Spring and Autumn in 2014 and 2015, except Ulva, which was only sampled in Autumn of both years, and Saccharina which was not sampled in Spring 2014. All the samples were studied for AA concentration. Six species (Cladophora, Laminaria, Mastocarpus, Palmaria, Porphyra and Ulva) were selected for the more resource demanding in situ study. Species and season interactively affected the content of total AA in crude protein in different seaweeds investigated (P=0.02), with values ranging from 67.2 for Laminaria in Spring to 90.2 gAA/16 g N for Ulva in Autumn. in situ AA degradability was also species specific. The seasonality of total AA in crude protein of different seaweed species mostly did not affect their ruminal degradability, except for alanine, while species and season interactively affected proline’s ruminal degradability. The total tract degradability showed that for Laminaria and Mastocarpus, methionine followed by leucine, isoleucine, histidine and lysine, were protected against rumen degradation. These protections seemed to be acid labile allowing digestion in the lower digestive tract. However, due to high indigestible fractions, these two seaweeds provided low amounts of AA to the intestines. Total tract AA digestibility values were the highest for Porphyra (906 g/kg) followed by Palmaria (843 g/kg) and the green seaweeds. To conclude, Laminaria and Mastocarpus are beneficial sources for bypass protein supply as they contain AA protected against rumen degradation. Based on their amount of AA and their AA degradability, Porphyra, followed by Palmaria and the green seaweeds (Ulva and Cladophora) can be considered as relevant sources of protein for ruminants.

To document

Abstract

Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface–atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MSNFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.

To document

Abstract

Finding efficient ways to decrease wood decay caused by fungi is an important issue in the timber construction. A possible way to avoid wood decay by fungi is by reducing the water content of wood, since water is a primary condition for fungal growth. Bulking of the wood cell wall by chemical reagents occupies the space where water normally occurs. This also improves the dimensional stability of the modified wood. The aim of the work was to react non-toxic reagents using a Maillard type of reaction in the wood cell wall. Wood was soaked in different aqueous solutions with a primary amine and a sugar as the main constituents. The wood was thereafter cured in an oven at 120°C. The preliminary results showed that the use of the Maillard reaction for wood modification is a promising method and is worth further research.

Abstract

This paper presents an optimization model designed to find productivity functions for timber forwarding. Timber forwarding or skidding has for some 25 years been calculated using shortest path formulations on grid networks. Unfortunately, few productivity studies relate to such grids. Here, an inverse shortest path problem is presented, basically panning out costs on the grid based on point cost estimates. The formulation is tested using point cost estimates from the national forest inventories of Norway, together with a terrain model and other public spatial data (e.g. roads, water). The problem is optimized using the metaheuristic variable neighborhood search. The results of the test cases were achieved in reasonable time, and indicate that part of the solution space might be convex. The productivity function found for one of the test cases was used to create a variable forwarding cost map of the case area.