Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

This study attempted to enhance sulfidogenic activity via sulfate-reducing bacteria (SRB) enrichment and minimize organic carbon loss by methanogen inhibition in the sulfidogenic stage of a two-stage anaerobic digestion system (TSADS). To enrich SRB in the sulfidogenic stage, batch tests were performed with various granular sludge pretreatments. Starvation was the most effective pretreatment, increasing SO42− removal and minimizing chemical oxygen demand (COD) loss by inhibiting methanogen activity. Microbial community analysis showed that Desulfovibrio, Desulfotomaculum, and Syntrophobacter were the dominant SRB in the sulfidogenic stage (5.0%, 3.1%, and 2.4%, respectively). This enabled SO42− reduction (86%) and volatile fatty acid production (55% of fed COD) at a hydraulic retention time (HRT) of 4 h. Conversely, biogas with a reduced H2S content (110 ppmv) was produced in the methanogenic stage (HRT = 6 h). A granular sludge comparison revealed differences in their ecology, structure, and extracellular polymeric substance characteristics. Economic feasibility analysis demonstrated that TSADS can lead to a cost reduction of $80–90/1,000 m3 CH4 compared to single-stage anaerobic digestion.

Abstract

Eradication of alien invasive species in the soil with steam as an alternative to chemical fumigation may allow contaminated soil to be reused. We have investigated steam disinfestation of soil to combat invasive plant species in three experiments including different temperatures and exposure durations using a prototype stationary soil-steaming device. The experiments included effects on seed germination of bigleaf lupine (Lupinus polyphyllus Lindl.), ornamental jewelweed (Impatiens glandulifera Royle), and wild oat (Avena fatua L.; one population from Poland and one from Norway), as well as effects on sprouting rhizome fragments of Canada goldenrod (Solidago canadensis L.) and Bohemian knotweed (Reynoutria x bohemica Chrtek & Chrtková). In Experiment 1, we tested four different soil temperatures of 64, 75, 79, and 98 C with an exposure duration of 90 s. In Experiments 2 and 3, we tested exposure durations of 30, 90, and 180 s and 90, 180, and 540 s, respectively, at 98 C. Seed pretreatment of 14 d cooling for L. polyphyllus and I. glandulifera, no seed pretreatment and 12-h moistening for A. fatua populations, and 5- and 10-cm cutting size for R. x bohemica were applied. Our results showed germination/sprouting was inhibited at 75 C for I. glandulifera (for 90 s) and 98 C for the other species; however, longer exposure duration was needed for L. polyphyllus. While 30 s at 98 C was enough to kill A. fatua seeds and S. canadensis and R. x bohemica rhizome fragments, 180-s exposure duration was needed to kill L. polyphyllus seeds. The results showed promising control levels of invasive plant propagules in contaminated soil by steaming, supporting the steam treatment method as a potential way of disinfecting soil to prevent dispersal of invasive species.

Abstract

Deliverable 2.2. This synthesis shows recent and current efforts in Europe related to the establishment of soil indicators as parameters used to quantify and valuate impacts of agricultural soil management practices on soil quality. It also shows how the existing indicators have been used. Among the best captured soil parameters across all participating countries are carbon concentration in soils and its changes in time, macronutrients (N, P, K) and micronutrients (Cu, Mn) contents in soils, soil pH, cation exchange capacity and base saturation of soils, soil texture and bulk density, and contamination with potentially toxic elements, especially Cd, Co, Cr, Cu, Ni, Pb and Zn. However, there is only partial agreement between the measured parameters and the indicators used in the national legislations and as policy maker´s tools.

To document

Abstract

The main objective was to evaluate to what extent subsoil compaction on an arable clay soil (Stagnosol (Drainic)) may be alleviated after 5 years under the climate conditions in South-East Norway. Therefore, field plots which had been ploughed and under minimum tillage were compacted through wheel impact (10x) with a 6.6 Mg wheel load. Samples were taken from the ‘compacted’ and ‘non-compacted reference’ treatments at depths of 40 and 60 cm both before and directly after compaction and again 5 years later. The soil physical parameters revealed that pre-compression stress, bulk density, air capacity, air conductivity and saturated hydraulic conductivity at depths of 40 and 60 cm were impaired by compaction, especially under ploughed. After 5 years, bulk density and pre-compression stress remained almost unchanged, while air capacity, air conductivity and saturated hydraulic conductivity had increased at both the 40 and 60 cm depth on both plots as compared to the compacted state and to R for the most part, indicating the recovery of the soil structure in the subsoil. The compaction status evaluated by the ‘compaction verification tool’ indicates the relative reduction of ‘harmful soil compaction’ (after wheel impact) with a change towards ‘slightly harmful compaction’ for the most part with an as yet limited saturated hydraulic conductivity at both depths after 5 years.