Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Authors
Rudi Hessel Guido Wyseure Ioanna S. Panagea Abdallah Alaoui Mark S. Reed Hedwig van Delden Melanie Muro Jane Mills Oene Oenema Francisco Areal Erik van den Elsen Simone Verzandvoort Falentijn Assinck Annemie Elsen Jerzy Lipiec Aristeidis Koutroulis Lilian O'Sullivan Martin A. Bolinder Luuk Fleskens Ellen Kandeler Luca Montanarella Marius Heinen Zoltán Tóth Moritz Hallama Julian Cuevas Jantiene E. M. Baartman Ilaria Piccoli Tommy Dalgaard Jannes Stolte Jasmine E. Black Charlotte-Anne ChiversAbstract
Soils form the basis for agricultural production and other ecosystem services, and soil management should aim at improving their quality and resilience. Within the SoilCare project, the concept of soil-improving cropping systems (SICS) was developed as a holistic approach to facilitate the adoption of soil management that is sustainable and profitable. SICS selected with stakeholders were monitored and evaluated for environmental, sociocultural, and economic effects to determine profitability and sustainability. Monitoring results were upscaled to European level using modelling and Europe-wide data, and a mapping tool was developed to assist in selection of appropriate SICS across Europe. Furthermore, biophysical, sociocultural, economic, and policy reasons for (non)adoption were studied. Results at the plot/farm scale showed a small positive impact of SICS on environment and soil, no effect on sustainability, and small negative impacts on economic and sociocultural dimensions. Modelling showed that different SICS had different impacts across Europe—indicating the importance of understanding local dynamics in Europe-wide assessments. Work on adoption of SICS confirmed the role economic considerations play in the uptake of SICS, but also highlighted social factors such as trust. The project’s results underlined the need for policies that support and enable a transition to more sustainable agricultural practices in a coherent way.
Authors
Marian Schönauer Robert Prinz Kari Väätäinen Rasmus Astrup Dariusz Pszenny Harri Lindeman Dirk JaegerAbstract
Milder winters and extended wetter periods in spring and autumn limit the amount of time available for carrying out ground-based forest operations on soils with satisfactory bearing capacity. Thus, damage to soil in form of compaction and displacement is reported to be becoming more widespread. The prediction of trafficability has become one of the most central issues in planning of mechanized harvesting operations. The work presented looks at methods to model field measured spatio-temporal variations of soil moisture content (SMC, [%vol]) – a crucial factor for soil strength and thus trafficability. We incorporated large-scaled maps of soil characteristics, high-resolution topographic information – depth-to-water (DTW) and topographic wetness index – and openly available temporal soil moisture retrievals provided by the NASA Soil Moisture Active Passive mission. Time-series measurements of SMC were captured at six study sites across Europe. These data were then used to develop linear models, a generalized additive model, and the machine learning algorithms Random Forest (RF) and eXtreme Gradient Boosting (XGB). The models were trained on a randomly selected 10% subset of the dataset. Predictions of SMC made with RF and XGB attained the highest R2 values of 0.49 and 0.51, respectively, calculated on the remaining 90% test set. This corresponds to a major increase in predictive performance, compared to basic DTW maps (R2 = 0.022). Accordingly, the quality for predicting wet soils was increased by 49% when XGB was applied (Matthews correlation coefficient = 0.45). We demonstrated how open access data can be used to clearly improve the prediction of SMC and enable adequate trafficability mappings with high spatial and temporal resolution. Spatio-temporal modelling could contribute to sustainable forest management.
2019
Abstract
No abstract has been registered
Abstract
Assessing redox conditions in soil and groundwater is challenging because redox reactions are oxygen sensitive, hence, destructive sampling methods may provide contact with air and influence the redox state. Furthermore, commonly used redox potential sensors provide only point measurements and are prone to error. This paper assesses whether combining electrical resistivity (ER) and self-potential (SP) measurements can allow the mapping of zones affected by anaerobic degradation. We use ER imaging because anaerobic degradation can release iron and manganese ions, which decreases pore water resistivity, and produces gas, which increases resistivity. Also, electrochemical differences between anaerobic and aerobic zones may create an electron flow, forming a self-potential anomaly. In this laboratory study, with four sand tanks with constant water table heights, time-lapse ER and SP mapped changes in electrical/electron flow properties due to organic contaminant (propylene glycol) degradation. Sampled pore water mapped degradation and water chemistry. When iron and manganese oxides were available, degradation reduced resistivity, because of cation release in pore water. When iron and manganese oxides were unavailable, resistivity increased, plausibly from methane production, which reduced water saturation. To bypass the reactions producing methane and release of metallic cations, a metal pipe was installed in the sand tanks between anaerobic and aerobic zones. The degradation creates an electron surplus at the anaerobic degradation site. The metal pipe allowed electron flow from the anaerobic degradation site to the oxygen-rich near surface. The electrical current sent through the metal pipe formed an SP anomaly observable on the surface of the sand tank. Time-lapse ER demonstrates potential for mapping degradation zones under anaerobic conditions. When an electrical conductor bridges the anaerobic zone with the near surface, the electron flow causes an SP anomaly on the surface. However, electrochemical differences between anaerobic and aerobic zones alone produced no SP signal. Despite their limitations, ER and SP are promising tools for monitoring redox sensitive conditions in unsaturated sandy soils but should not be used in isolation.
Authors
Karin Westlund Petrus Jönsson Dag Fjeld Peter Rauch Christoph KoglerAbstract
Seasonal variations in wood supply are linked to the regional operating environment. This study constitutes the Norwegian contribution to Era-Net MultiStrat (Multimodal strategies for more resilient wood supply) covering oceanic, sub-arctic and continental climate zones. The oceanic zone is characterized by considerable seasonal variation in both temperature and precipitation. The goal of the study was to seek solutions for more resilient wood supply under these conditions. The study started with a general mapping of wood supply management processes including common demand and supply risks (WP1). The work continued with analysis of three years of production and transport reports (2014-2016) with tracking of roadside stocks and transport lead times (WP2). Daily temperature, precipitation, and snowpack were tracked with data from 65 surrounding weather stations. A simple multimodal transport problem with a rolling selection of planning horizons was then used to find the efficient multimodal solutions for the core, adjacent and peripheral supply regions through 12 balance periods per year (WP3). The transport analysis covers 65 supply districts feeding 6 assortment groups to 10 mills via 11 shipping terminals. The transport analysis varied both vessel cargo capacity and cargo collection practices. The results demonstrated a wide range of solutions to ensure roundwood availability with limited increases in system costs. While the transport analysis demonstrated the contribution of the multimodal solutions to structural flexibility, it also revealed a bottleneck for resilience of the wood supply system; seasonal variation in truck transport output (m3km/week). The geographical distribution of seasonality showed the main source to be one particular supply region. A subsequent wood supply planning workshop with production managers indicated that a bottleneck for improved production planning was short wood purchase and planning horizons. A simple optimization experiment was therefore set up to quantify the feasibility of more specific site-type selection according to actual soil and seasonal weather conditions for the selected region. On-line grid-based groundwater modeling was used to monitor weekly geographical variations in bearing capacity and the experiment provided a plausible re-scheduling of flows to reduce variation in delivery volumes and transport output.
Authors
Patrick J. Drohan Marianne Bechmann Anthony Buda Faruk Djodjic Donnacha Doody Jonathon M. Duncan Antti Iho Phil Jordan Peter J. Kleinman Richard McDowell Per-Erik Mellander Ian A. Thomas Paul J. A. WithersAbstract
The evolution of phosphorus (P) management decision support tools (DSTs) and systems (DSS), in support of food and environmental security has been most strongly affected in developed regions by national strategies (i) to optimize levels of plant available P in agricultural soils, and (ii) to mitigate P runoff to water bodies. In the United States, Western Europe, and New Zealand, combinations of regulatory and voluntary strategies, sometimes backed by economic incentives, have often been driven by reactive legislation to protect water bodies. Farmer‐specific DSSs, either based on modeling of P transfer source and transport mechanisms, or when coupled with farm‐specific information or local knowledge, have typically guided best practices, education, and implementation, yet applying DSSs in data poor catchments and/or where user adoption is poor hampers the effectiveness of these systems. Recent developments focused on integrated digital mapping of hydrologically sensitive areas and critical source areas, sometimes using real‐time data and weather forecasting, have rapidly advanced runoff modeling and education. Advances in technology related to monitoring, imaging, sensors, remote sensing, and analytical instrumentation will facilitate the development of DSSs that can predict heterogeneity over wider geographical areas. However, significant challenges remain in developing DSSs that incorporate “big data” in a format that is acceptable to users, and that adequately accounts for catchment variability, farming systems, and farmer behavior. Future efforts will undoubtedly focus on improving efficiency and conserving phosphate rock reserves in the face of future scarcity or prohibitive cost. Most importantly, the principles reviewed here are critical for sustainable agriculture.
2017
Abstract
The moisture status of the upper 10cm of the soil profile is a key variable for the prediction of a catchment's hydrological response to precipitation, and of pivotal importance to the estimation of trafficability. Prediction, and even mapping, of topsoil water content is complicated, not in the least because of its large spatial heterogeneity. In IRIDA, an EU/JPI project, measurements, models and weather predictions will be applied to estimate the soil moisture status at the sub-field scale in near-real time. The project is in its early stages, during which the relevant parameters will be selected that will allow for soil moisture mapping on agricultural fields at a 10 m resolution.
Abstract
Stand dynamics and the gap initiation prior to gap formation are not well- understood because of its long- term nature and the scarcity of late- successional stands. Reconstruction of such disturbance is normally based on historical records and den-droecological methods. We investigated gap initiation and formation at the fine- scale stand level in the old- growth reserve of Karlshaugen in Norway. Given its long- term conservation history, and thorough mapping in permanent marked plots with spatially referenced trees, it provides an opportunity to present stand development before, during, and after gap formation. Late- successional decline in biomass was recorded after more than 50 years of close to steady state. Gaps in the canopy were mainly cre-ated by large old trees that had been killed by spruce bark beetles. Snapping by wind was the main reason for treefall. Long- term dominance of Norway spruce excluded downy birch and Scots pine from the stand. Comparisons of the forest floor soil prop-erties between the gap and nongap area showed significantly higher concentrations of plant available Ca within the gap area. Plant root simulator (PRS™) probes showed significantly higher supply rates for Ca and Mg, but significantly lower K for the gap compared to the nongap area. Soil water from the gap area had significantly higher C:N ratios compared to the nongap area. Fine- scale variation with increasing distance to logs indicated that CWD is important for leaking of DOC and Ca. Our long- term study from Karlshaugen documents gap dynamics after more than 50 years of steady state and a multiscale disturbance regime in an old- growth forest. The observed dis-turbance dynamic caused higher aboveground and belowground heterogeneity in plots, coarse woody debris, and nutrients. Our study of the nutrient levels of the forest floor suggest that natural gaps of old- growth forest provide a long- lasting biogeo-chemical feedback system particularly with respect to Ca and probably also N. Norway spruce trees near the gap edge responded with high plasticity to reduced competition, showing the importance of the edge zone as hot spots for establishing heterogeneity, but also the potential for carbon sequestration in old- growth forest.
Abstract
Management of peat soils is regionally important as they cover large land areas and have important but conflicting ecosystems services. A recent management trend for drained peatlands is the control of greenhouse gases (GHG) by changes in agricultural practices, peatland restoration or paludiculture. Due to complex antagonistic controls of moisture, water table management can be difficult to use as a method for controlling GHG emissions. Past studies show that there is no obvious relationship between GHG emission rates and crop type, tillage intensity or fertilization rates. For drained peat soils, the best use options can vary from rewetting with reduced emission to efficient short term use to maximize the profit per amount of greenhouse gas emitted. The GHG accounting should consider the entire life cycle of the peatland and the socio-economic benefits peatlands provide locally. Cultivating energy crops is a viable option especially for wet peat soils with poor drainage, but harvesting remains a challenge due to tractability of wet soils. Paludiculture in lowland floodplains can be a tool to mitigate regional flooding allowing water to be stored on these lands without much harm to crops. This can also increase regional biodiversity providing important habitats for birds and moisture tolerant plant species. However, on many peatlands rewetting is not possible due to their position in the landscape and the associated difficulty to maintain a high stable water table. While the goal of rewetting often is to encourage the return of peat forming plants and the ecosystem services they provide such as carbon sequestration, it is not well known if these plants will grow on peat soils that have been altered by the process of drainage and management. Therefore, it is important to consider peat quality and hydrology when choosing management options. Mapping of sites is recommended as a management tool to guide actions. The environmental status and socio-economic importance of the sites should be assessed both for continued cultivation but also for other ecosystem services such as restoration and hydrological functions (flood control). Farmers need advice, tools and training to find the best after-use option. Biofuels might provide a cost-efficient after use option for some sites. Peat extraction followed by rewetting might provide a sustainable option as rewetting is often easier if the peat is removed, starting the peat accumulation from scratch. Also this provides a way to finance the after-use. As impacts of land use are uncertain, new policies should consider multiple benefits and decisions should be based on scientific evidence and field scale observations. The need to further understand the key processes and long term effects of field scale land use manipulations is evident. The recommended actions for peatlands should be based on local condition and socio-economic needs to outline intermediate and long term plans.
2015
Authors
Ingunn Burud Christophe Moni Andreas Svarstad Flø Cecilia Marie Futsæther Markus Steffens Daniel RasseAbstract
No abstract has been registered