Robert Barneveld

Research Scientist

(+47) 968 51 427

Ås O43

Visiting address
Oluf Thesens vei 43, 1433 Ås

To document


Measures designed to control erosion serve two purposes: on site (reduce soil loss) and off site (reduce sediment delivery to streams and lakes). While these objectives often coincide or at least are complementary, they could result in different priority areas when spatial planning is concerned. Prioritising for soil loss reduction at the field level will single out areas with high erosion risk. When sediment flux at the catchment scale is concerned, sediment pathways need to be identified in ex ante analyses of soil conservation plans. In Norway, different subsidy schemes are in place to reduce the influx of solutes and sediments to the freshwater system. Financial support is given to agronomic measures, the most important of which is reduced autumn tillage where areas with higher erosion risk receive higher subsidies. The objectives of this study are (1) to assess the use of an index of connectivity to estimate specific sediment yields, and (2) to test whether conservation measures taken in critical source areas are more effective than those taken at where erosion risk levels are the highest. Different modelling approaches are combined to assess soil loss at catchment level from sheet and gully erosion and soil losses through the drainage system. A calibration on two parameters gave reasonable results for annual soil loss. This model calibration was then used to quantify the effectiveness of three strategies for spatial prioritisation: according to hydrological connectivity, sheet erosion risk level and estimated specific sediment yield. The latter two strategies resulted in a maximum reduction in total soil loss due to reduced autumn tillage of 10%. Both model performance and the effectiveness of the different prioritisation strategies varied between the study catchments.

To document


Knowledge of soil microtopography and its changes in space and over time is important to the understanding of how tillage influences infiltration, runoff generation and erosion. In this study, the use of a terrestrial laser scanner (TLS) is assessed for its ability to quantify small changes in the soil surface at high spatial resolutions for a relatively large surface area (100 m2). Changes in soil surface morphology during snow cover and melt are driven by frost heave, slaking, pressure exertion by the snowpack and overland flow (erosion and deposition). An attempt is undertaken to link these processes to observed changes at the soil surface. A new algorithm for soil surface roughness is introduced to make optimal use of the raw point cloud. This algorithm is less scale dependent than several commonly used roughness calculations. The results of this study show that TLSs can be used for multitemporal scanning of large surfaces and that small changes in surface elevation and roughness can be detected. Statistical analysis of the observed changes against terrain indices did not yield significant evidence for process differentiation.


The moisture status of the upper 10cm of the soil profile is a key variable for the prediction of a catchment's hydrological response to precipitation, and of pivotal importance to the estimation of trafficability. Prediction, and even mapping, of topsoil water content is complicated, not in the least because of its large spatial heterogeneity. In IRIDA, an EU/JPI project, measurements, models and weather predictions will be applied to estimate the soil moisture status at the sub-field scale in near-real time. The project is in its early stages, during which the relevant parameters will be selected that will allow for soil moisture mapping on agricultural fields at a 10 m resolution.


Knowledge of hydrological processes and water balance elements are important for climate adaptive water management as well as for introducing mitigation measures aiming to improve surface water quality. Mathematical models have the potential to estimate changes in hydrological processes under changing climatic or land use conditions. These models, indeed, need careful calibration and testing before being applied in decision making. The aim of this study was to compare the capability of five different hydrological models to predict the runoff and the soil water balance elements of a small catchment in Norway. The models were harmonised and calibrated against the same data set. In overall, a good agreement between the measured and simulated runoff was obtained for the different models when integrating the results over a week or longer periods. Model simulations indicate that forest appears to be very important for the water balance in the catchment, and that there is a lack of information on land use specific water balance elements. We concluded that joint application of hydrological models serves as a good background for ensemble modelling of water transport processes within a catchment and can highlight the uncertainty of models forecast.

Atj 2018-3562

Division of Environment and Natural Resources

IRIDA: Innovative remote and ground sensors, data and tools into a decision support system for agriculture water management

Efficient agriculture water use is of crucial importance for water resources management. Evapotranspiration is an important part of the water cycle, as it is the sum of evaporation and plant transpiration from the Earth's land and ocean surface to the atmosphere. Consequently, accurately determining evapotranspiration (ET) is the first step for improving irrigation efficiency and productivity and for quantifying the ecosystem water balance. The IRIDA´s approach is to combine on the ground ET and soil moisture measurements, with remote sensing ET determinations obtained with unmanned aerial vehicle (UAV/RPAS/UAS) (at plot scale) and manned vehicles and satellites (at catchment scale). IRIDA will integrate the methodologies and routines into a decision support system that will serve to manage the large amount of inputs by means of big data analysis tools. The IRIDA platform to be created will provide simple irrigation recommendation supporting end-users and irrigators when deciding the exact location for installing on-ground soil and plant water status sensors. On the other hand, at the water basin level, under conditions of varying land use as in northern Northern Europe, the evaluation of satellite remote sensing will allow increasing the accuracy of the ecosystem water balance determination, improving flood predictions and the water footprint assessment. At the end of the project execution, End Users’ interfaces and applications such as cloud web server and smartphone applications to exploit solution intelligence will be designed. By using the IRIDA protocols, the water savings to be achieved are expected to be around 7 to 15% and the estimated direct farm savings costs could be up to 420 €/ha. These first estimations based on theoretical assumptions, will be validated in several field demo-areas in Spain, Italy, Romania and Norway across different environmental and cropping conditions.

Active Updated: 29.11.2020
End: sep 2022
Start: may 2016