Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2009
Forfattere
Holger Lange Lukas GudmundssonSammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Sammendrag
Introduction: Current risk assessment procedures for contaminated land and for pesticides often fail to properly characterize the risk of chemicals for environment or human health and provide only a rough estimate of the potential risk of chemicals. Chemicals often occur in mixtures in the environment, while regulatory agencies often use a chemical-by-chemical approach, focusing on a single media, a single source, and a single toxic endpoint. Current concepts to estimate biological effects of chemical mixtures mainly rely on data available for single chemicals, disregarding interaction between chemicals in soils. The importance of soil microbes and their activity in the functioning of soils impose a need to include microorganisms in soil quality assessments (Winding et al., 2005) including terrestrial ecotoxicological studies. Numerous papers have been published on the effects of different contaminants on soil microbes, establishing changes in soil microbial diversity as an indicator of soil pollution, but only a limited number of molecular studies investigating fungal diversity in the environment have been performed. The main objective of the study presented here, is to assess the applicability of changes in soil microbial diversity and activity levels as indicators of ecologically relevant effects of chemicals contamination. We have studied the effects of the fungicide picoxystrobin and the chemical 4-n-nonylphenol, on the microbial biodiversity in a Norwegian sandy loam with focus both on prokaryotes and the fungal species. 4-n-nonylphenol is a chemical occurring in high amounts in sewage sludge, hence, these chemicals may occur as single chemicals as well as in mixtures in soils. This work is part of the research project ‘Bioavailability and biological effects of chemicals - Novel tools in risk assessment of mixtures in agricultural and contaminated soils" funded by the Norwegian research council.Methods: Soil samples were treated with the single chemicals or mixtures and incubated at 20°C. Continuous monitoring of respiration activity as well as occasional destructive sampling for extraction of soil DNA, RNA, and chemical residues was performed through a 70 d period. Amplification of soil bacterial and fungal DNA was followed by T-RFLP analysis to assess chemicals effects on soil microbial diversity. Further work will include analyses of extracted soil RNA to assess chemicals effects on important soil functions (e.g. nitrogen cycling, decomposition of organic matter) and an assessment of chemicals effects on the genetic diversity of the soil by high throughput shot-gun sequencing. Finally the results will be evaluated to assess the suitability of any specific group, species or activity/function as biomarker for the selected chemicals (and possibly their group of chemicals).Results and conclusions: A project outline and preliminary results from the project will be presented at the conference.ReferencesWinding A, Hund-Rinke K, Rutgers M (2005). The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety 62: 230-248.
Sammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Forfattere
Wolfgang Britz Klaus MittenzweiSammendrag
No abstract has been registered
Forfattere
Wenche DramstadSammendrag
No abstract has been registered
Forfattere
Ari Hietala Nina Elisabeth Nagy Arne Steffenrem Harald Kvaalen Carl Gunnar Fossdal Halvor SolheimSammendrag
No abstract has been registered
Sammendrag
Two mature clones of Norway spruce (Picea abies (L.) Karst.) shown to have different level of resistance towards inoculation of Heterobasidion parviporum were compared with respect to spatiotemporal expression of transcripts related to biosynthesis of lignin, stilbenes and other phenolic compounds in response to fungal inoculation and physical wounding. Both clones responded to H. parviporum and physical wounding at transcriptional and chemical levels. Taxifolin, detected in the resistant clone only, increased in concentration following both wounding and inoculation. Concentrations of stilbenoid glucosides were highest in the susceptible clone. Following wounding or inoculation, concentrations of these glucosides increased in the susceptible clone, and quantities of their corresponding aglycones increased dramatically in both clones close to the treatment point. Significant changes in transcription were detected over the entire lesion length for all transcripts, and only the changes in a few transcripts indicated a response to inoculation with H. parviporum differing from that caused by wounding alone. The resistant clone had higher basal concentrations of lignin (LTGA) compared to the susceptible clone; concentrations increased in both clones after wounding and wounding plus inoculation treatments, but remained consistently higher in the resistant clone, suggesting higher lignin levels in the cell walls compared to the susceptible clone. In addition, the transcript level in the same clones was also measured the following year and we saw indications of primed defences for a number of gene products likely resulting from the inoculations performed 12 months prior.