Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Nitrogen (N) and phosphorus (P) losses via agricultural drainage water have negative impacts on receiving water bodies and large-scale programmes to reduce nutrient losses have been established in the Nordic and Baltic countries, together with agricultural catchment monitoring programmes. This study evaluated time series (9–40 years) of data from 34 selected Nordic-Baltic catchments for spatial and temporal variations in area-specific water discharge (mm) and in concentrations and transport of total nitrogen (TN) and total phosphorus (TP). Water discharge from the catchments varied from 125 mm (Denmark) to > 1000 mm (Norway). Catchments with low TN concentrations (≤3 mg L-1) were dominated by clay or grass leys or were undrained with reduction of nitrate (NO3) in shallow groundwater. Catchments with high TN concentrations (≥10 mg L-1) had loams and cereal crops. TP concentrations were highest (≥0.45 mg L-1) in catchments with erosive soils, relatively high water discharge and cereal crops, and lowest (≤0.07 mg L-1) in catchments with permeable soils. Generalised additive mixed model (GAMM) analysis of time series of transport and flow-weighted concentrations of TN and TP for temporal patterns revealed decreases in TN concentrations in seven catchments and increases in eight, while four had periods with opposing trends. TN concentrations decreased in Denmark and Sweden in 1990–2010, following introduction of mitigation programmes. TP concentrations decreased in eight catchments and increased in six, while one showed opposing trends. Decreases in TP coincided with improved P balance in catchments with sand and loam. To further reduce N and P losses, a tailored set of mitigation measures is needed for each combination of soil, climate, geohydrology and agricultural production. Intensive monitoring of small catchments can reveal how N and P losses relate to natural conditions and to changes in agricultural production.

To document

Abstract

Introduction: Conventional rice production techniques are less economical and more vulnerable to sustainable utilization of farm resources as well as significantly contributed GHGs to atmosphere. Methods: In order to assess the best rice production system for coastal areas, six rice production techniques were evaluated, including SRI-AWD (system of rice intensification with alternate wetting and drying (AWD)), DSR-CF (direct seeded rice with continuous flooding (CF)), DSR-AWD (direct seeded rice with AWD), TPR-CF (transplanted rice with CF), TPR-AWD (transplanted rice with AWD), and FPR-CF (farmer practice with CF). The performance of these technologies was assessed using indicators such as rice productivity, energy balance, GWP (global warming potential), soil health indicators, and profitability. Finally, using these indicators, a climate smartness index (CSI) was calculated. Results and discussion: Rice grown with SRI-AWD method had 54.8 % higher CSI over FPR-CF, and also give 24.5 to 28.3% higher CSI for DSR and TPR as well. There evaluations based on the climate smartness index can provide cleaner and more sustainable rice production and can be used as guiding principle for policy makers.

Abstract

The aim of this study was to contribute to development of organic fertiliser products based on fish sludge (i.e. feed residues and faeces) from farmed smolt. Four dried fish sludge products, one liquid digestate after anaerobic digestion and one dried digestate were collected at Norwegian smolt hatcheries in 2019 and 2020. Their quality as fertilisers was studied by chemical analyses, two 2-year field experiments with spring cereals and soil incubation combined with a first-order kinetics N release model. Cadmium (Cd) and zinc (Zn) concentrations were below European Union maximum limits for organic fertilisers in all products except one (liquid digestate). Relevant organic pollutants (PCB7, PBDE7, PCDD/F + DL-PCB) were analysed for the first time and detected in all fish sludge products. Nutrient composition was unbalanced, with low nitrogen/phosphorus (N/P) ratio and low potassium (K) content relative to crop requirements. Nitrogen concentration in the dried fish sludge products varied (27–70 g N kg-1 dry matter), even when treated by the same technology but sampled at different locations and/or times. In the dried fish sludge products, N was mainly present as recalcitrant organic N, resulting in lower grain yield than with mineral N fertiliser. Digestate showed equally good N fertilisation effect as mineral N fertiliser, but drying reduced N quality. Soil incubation in combination with modelling is a relatively cheap tool that can give a good indication of N quality in fish sludge products with unknown fertilisation effects. Carbon/N ratio in dried fish sludge can also be used as an indicator of N quality.

2022

Abstract

The occurrence of freeze–thaw cycles modifies water infiltration processes and surface runoff generation. Related processes are complex and are not yet fully investigated at field scale. While local weather conditions and soil management practices are the most important factors in both runoff generation and surface erosion processes, local terrain heterogeneities may significantly influence soil erosion processes in catchments with undulating terrain. This paper presents a field-based investigation of spatial and temporal heterogeneities in subsurface soil moisture and soil temperature associated with freezing, thawing, and snowmelt infiltration. The field setup consists of a combination of traditional point measurements performed with frequency domain reflectometry (FDR) and electrical resistivity tomography (ERT). The transect was approximately 70 m long and spanned an entire depression with a north-facing slope (average slope of 11.5%) and a south-facing slope (average slope of 9.7%). The whole depression was entirely covered with stubble. Observed resistivity patterns correspond well to the measured soil moisture patterns. During the observation period, the north facing slope froze earlier and deeper compared with the south facing slope. Freeze–thaw cycles were less pronounced in the north-facing slope than in the south-facing slope. There were also differences in soil temperature and soil moisture patterns between lower and upper parts of the monitored depression. These indicate that initiation and development of runoff related processes, and consequently soil erosion, in regions with freeze–thaw cycles may differ significantly depending on local terrain characteristics. Consequently, it indicates that spatial terrain heterogeneities, especially slope aspects, may be important when studying soil erosion processes, water flow and nutrient leaching in lowlands where patchy snowpacks and dynamic freeze–thaw cycles are predominating.

To document

Abstract

Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, potential toxic elements (PTEs), fertiliser, soil improver, fertiliser products, growing media, circular economy, circulation of organic fertilisers, arsenic (As), cadmium (Cd), chromium Cr(tot) (Cr(III) and Cr(VI)), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), zinc (Zn). Background and purpose of the report The potentially toxic elements (PTE) arsenic (As), cadmium (Cd), chromium Cr(tot) (Cr(III) and Cr(VI)), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn) occur as ingredients or contaminants in many fertilisers, soil improvers, engineered soil and growing media. Application of these fertiliser products might represent a risk towards the environment, farm animals and humans, particularly when applied annually over several years. The present risk assessment evaluates the application of selected fertilisers according to certain scenarios for representative Norwegian agricultural areas, from Troms in the North to Ås in Southeastern and Time in Southwestern Norway, with different soil properties, precipitation and PTE concentration in present agricultural soil. There is an increasing trend to produce locally (e.g. in urban farming) and home-grown vegetables that are cultivated in engineered soil and growth media. The maximum levels (MLs) set for PTEs in different organic fertilisers, engineered soil and growing media for use in urban farming, home growing and the cultivation of vegetables and garden fruits, and a set of MLs also for application in agricultural cultivation of crops, have been evaluated. Environmental fate processes and the transfer of PTEs have been modelled and the environmental risks for terrestrial and aquatic organisms, including from secondary poisoning have been estimated. Potential risks to humans and farmed animals by increased exposure to PTEs from, respectively, agriculturally produced crops, vegetables cultivated at home and urban farming or forage and grazing have been evaluated. The recycling of nutrients is urgently needed to achieve circular economy, but the derived sustainable products have to be safe, which requires the introduction of and adherence to science-based maximum levels of unwanted substances (e.g. pollutants). This assessment evaluates consequences of the application of different fertiliser products: mineral P fertilisers, manure from cattle, pig, poultry and horse, fish sludge, digestates and sewage sludge - in order to identify PTE sources with potential environmental, animal and human health risks, and to evaluate the appropriateness of the current MLs regarding different applications of organic-based fertilisers, engineered soil and growing media at present, and in a 100-year perspective. Approach and methods applied The approach for environmental and health risk assessments builds on previous work performed for hazardous substances in soil (e.g. VKM 2019, VKM 2014, VKM, 2009, Six and Smolders, 2014). Concentrations of PTEs in soil over time were calculated using a mass balance model, which considers the input by atmospheric deposition, use of fertilisers and soil improvers, as well as loss by leaching, run-off and plant uptake. The resulting first-order differential equation was solved analytically and implemented into Excel®. Run-off and loss by leaching were estimated from data on precipitation, infiltrating fraction and run-off fraction of the water under consideration of the distribution coefficient Kd for the concentration ratio of bulk soil-to-water. This Kd value takes aging sufficiently into account and is thus more realistic than those derived from batch tests. The Kd was estimated separately for each region using established regression equations, with soil pH, organic matter content and clay content as predictors. ...........

To document

Abstract

This study investigates the combined impacts of climate change and agricultural conservation on the magnitude and uncertainty of nutrient loadings in the Maumee River Watershed, the second-largest watershed of the Laurentian Great Lakes. Two scenarios — baseline agricultural management and increased agricultural conservation — were assessed using an ensemble of five Soil and Water Assessment Tools driven by six climate models. The increased conservation scenario included raising conservation adoption rates from a baseline of existing conservation practices to feasible rates in the near future based on farmer surveys. This increased adoption of winter cover crops on 6%–10% to 60% of cultivated cropland; subsurface placement of phosphorus fertilizers on 35%–60% to 68% of cultivated cropland; and buffer strips intercepting runoff from 29%–34% to 50% of cultivated cropland. Increased conservation resulted in statistically significant (p ≤ 0.05) reductions in annual loads of total phosphorus (41%), dissolved reactive phosphorus (18%), and total nitrogen (14%) under the highest emission climate scenario (RCP 8.5). While nutrient loads decreased with increased conservation relative to baseline management for all watershed models, different conclusions on the true effectiveness of conservation under climate change may be drawn if only one watershed model was used.