Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2015

2014

To document

Abstract

Dietary phytoestrogens are metabolized or converted in the gastrointestinal tract of ruminants, only limited knowledge exists on the extent and location of this conversion in vivo. The objective of this study was to quantify the gastro-intestinal metabolism of phytoestrogens in lactating dairy cows fed silages with different botanical composition. Four lactating rumen cannulated Norwegian Red cattle were assigned to a 4 × 4 Latin square with 1 cow per treatment period of 3 wk. The 4 treatment silages were prepared from grasslands with different botanical compositions: organically managed short-term timothy (Phleum pratense L.) and red clover (Trifolium pratense L.) ley (2 yr old: ORG-SG); organically managed long-term grassland with a high proportion of unsown species (6 yr old; ORG-LG); conventionally managed perennial ryegrass (Lolium perenne L.) ley (CON-PR); and conventionally managed timothy ley (CON-TI). The herbages were cut, wilted, and preserved with additive in round bales, fed as a mix of the first and third cut at 90% of ad libitum intake, and contributed to 70% of the total dry matter intake. Milk, feed, omasal digesta, urine, and feces were collected at the end of each period and analyzed for the concentrations of phytoestrogens by using a liquid chromatography–tandem mass spectrometry technique. Concentration of total isoflavones was highest in ORG-SG and lowest in CON-TI silage, whereas the content of total lignans was highest in the grass silages. The isoflavones were extensively metabolized in the rumen on all diets, and the recovery of formononetin and daidzein in omasum, mainly as equol, averaged 0.11 mg/mg. The apparent intestinal metabolism was less severe as, on average, 0.29 mg/mg of the omasal flow was recovered in feces. The plant lignans were also strongly degraded in the rumen. However, the flow of lignans to omasum and excretion in feces were, on average, 7.2- and 5.2-fold higher, respectively, than the intake of the plant lignans matairesinol and secoisolariciresinol, known as precursors of mammalian lignans. Thus, excretion to milk could not be directly related to intake, implying that plant lignans other than matairesinol and secoisolariciresinol in forage are precursors for enterolactone production in the rumen and for its content in milk. Equol followed mainly the flow of large particles out of the rumen, whereas the mammalian lignans were distributed between phases proportional to dry matter flow. The main metabolism of phytoestrogens occurred in the rumen and the main route of excretion was through feces and urine, with only a small part being excreted in milk. The concentration of phytoestrogens in milk can be manipulated through intake but the intermediate transfer capacity to milk appears to be limited by saturation

To document

Abstract

Phyto-oestrogens are a group of secondary plant metabolites that may bind to oestrogen receptors and exert oestrogenic or anti-oestrogenic effects in humans and can protect against cancer diseases. When ingested by dairy cows, phyto-oestrogens can be metabolised and transferred to the milk. The objective of this study was to assess the effects of grazing a recently established pasture containing red clover (Trifolium pratense L.) and an older pasture containing a variety of sown and unsown plant species on milk concentrations of phyto-oestrogens. Sixteen Norwegian Red dairy cows [mean (standard deviation); body weight 599 (45.1) kg, stage of lactation 73 (15.0) d in milk, milk yield 29.9 (2.90) kg/d at the start of the experiment] were divided into two groups and grazed either a short-term pasture (SP) or a long-term pasture (LP). The SP was representative of organically managed leys in Norway, which are frequently, approximately every third year, renewed by soil tillage and seeding, whereas LP was representative of organically managed grasslands that are less frequently renewed. The SP contained meadow fescue (Festuca pratensis Huds.) (mean 34%), timothy (Phleum pratense L.) (mean 19%), red clover (mean 28%), shepherd׳s-purse (Capsella bursa-pastoris (L.) Medik.) (mean 6%), pineappleweed (Matricaria matricarioides Porter ex Britton) (mean 5%) and scentless mayweed (Tripleurospermum perforatum (Mérat) Laínz) (mean 4%), and LP contained mainly white clover (Trifolium repens L.) (mean 21%), smooth meadowgrass (Poa pratensis L.) (mean 19%), timothy (mean 17%), meadow fescue (mean 15%), perennial ryegrass (Lolium perenne L.) (mean 6%), tufted hairgrass (Deschampsia cespitosa (L.) P. Beauv.) (mean 5%), northern dock (Rumex longifolius DC.) (mean 4%), common couch (Elytrigia repens (L.) Desv. Ex Nevski) (mean 4%), red clover (mean 3%) and dandelion (Taraxacum spp.) (mean 3%). In addition to a daily pasture allowance of 20 kg dry matter per cow, supplements of 3.0 kg barley (Hordeum vulgare L.) concentrate were fed. Herbage, concentrates and milk was sampled during the last week of three experimental periods and analysed for phyto-oestrogens using LC-MS/MS technology. Herbage from SP had 19 times higher concentration of isoflavones than herbage from LP, whereas only small differences were found for lignans. Milk produced on SP had 14 times higher concentrations of the mammalian isoflavonoid equol, and the concentrations of equol were higher than found in most other studies. This study confirms that grazing pastures containing red clover increases concentrations of isoflavones and especially equol in bovine milk compared to grazing pastures with other botanical composition. The higher milk concentrations of the lignan metabolite enterodiol in milk from SP compared to LP could not be related to differences in intake of the analysed lignans and may therefore be related to unidentified lignans.