Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2025
Abstract
RoadSens is a platform designed to expedite the digitalization process of forest roads, a cornerstone of efficient forest operations and management. We incorporate stereo-vision spatial mapping and deep-learning image segmentation to extract, measure, and analyze various geometric features of the roads. The features are precisely georeferenced by fusing post-processing results of an integrated global navigation satellite system (GNSS) module and odometric localization data obtained from the stereo camera. The first version of RoadSens, RSv1, provides measurements of longitudinal slope, horizontal/vertical radius of curvature and various cross-sectional parameters, e.g., visible road width, centerline/midpoint positions, left and right sidefall slopes, and the depth and distance of visible ditches from the road’s edges. The potential of RSv1 is demonstrated and validated through its application to two road segments in southern Norway. The results highlight a promising performance. The trained image segmentation model detects the road surface with the precision and recall values of 96.8 and 81.9 , respectively. The measurements of visible road width indicate sub-decimeter level inter-consistency and 0.38 m median accuracy. The cross-section profiles over the road surface show 0.87 correlation and 9.8 cm root mean squared error (RMSE) against ground truth. The RSv1’s georeferenced road midpoints exhibit an overall accuracy of 21.6 cm in horizontal direction. The GNSS height measurements, which are used to derive longitudinal slope and vertical curvature exhibit an average error of 5.7 cm compared to ground truth. The study also identifies and discusses the limitations and issues of RSv1, which provide useful insights into the challenges in future versions.
2024
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Johannes RahlfAbstract
No abstract has been registered
Authors
Johannes RahlfAbstract
No abstract has been registered
Authors
Johannes RahlfAbstract
No abstract has been registered
Authors
Johannes RahlfAbstract
No abstract has been registered
Authors
Erico Kutchartt José Ramón González-Olabarria Núria Aquilué Jordi Garcia-Gonzalo Antoni Trasobares Brigite Botequim Marius Hauglin Palaiologos Palaiologou Vassil Vassilev Adrian Cardil Miguel Ángel Navarrete Christophe Orazio Francesco PirottiAbstract
No abstract has been registered
Authors
Erico Kutchartt José Ramón González-Olabarria Antoni Trasobares Núria Aquilué Juan Guerra-Hernández Leónia Nunes Ana Catarina Sequeira Brigite Botequim Marius Hauglin Palaiologos Palaiologou Adrian Cardil Martino Rogai Vassil Vassilev Francois Pimont Olivier Martin-Ducup Francesco PirottiAbstract
Canopy base height (CBH) and canopy bulk density (CBD) are forest canopy fuel parameters that are key for modeling the behavior of crown wildfires. In this work, we map them at a pan-European scale for the year 2020, producing a new dataset consisting of two raster layers containing both variables at an approximate resolution of 100 m. Spatial data from Earth observation missions and derived down-stream products were retrieved and processed using artificial intelligence to first estimate a map of aboveground biomass (AGB). Allometric models were then used to estimate the spatial distribution of CBH using the canopy height values as explanatory variables and CBD using AGB values. Ad-hoc allometric models were defined for this study. Data provided by FIRE-RES project partners and acquired through field inventories was used for validating the final products using an independent dataset of 804 ground-truth sample plots. The CBH and CBD raster maps have, respectively, the following accuracy regarding specific metrics reported from the modeling procedures: (i) coefficient of correlation (R) of 0.445 and 0.330 (p-value < 0.001); (ii) root mean square of error (RMSE) of 3.9 m and 0.099 kg m−3; and (iii) a mean absolute percentage error (MAPE) of 61% and 76%. Regarding CBD, the accuracy metrics improved in closed canopies (canopy cover > 80%) to R = 0.457, RMSE = 0.085, and MAPE = 59%. In short, we believe that the degree of accuracy is reasonable in the resulting maps, producing CBH and CBD datasets at the pan-European scale to support fire mitigation and crown fire simulations.