Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

Abstract

An increasing demand for forest biomass to energy is leading to a more intensive harvesting of timber, also including an exploitation of the crown biomass. This sets new demands for forest inventory systems to generate more detailed information about the forest biomass fractions. Norway has unutilized forest resources, which can be used for bioenergy. These also include Norway spruce (Picea abies (L.) Karst.). The material was sampled from three different locations in Southern Norway from west to east. Each location was represented with tree different site indices. Vertical profiles of branch weight, length and diameter were studied. The effect of different tree and site characteristics were used to predict the profiles. Significant differences were found between the geographical locations studied after adjusting for tree height and diameter in breast height. Branches from the western site were longer and had a greater mass compared to branches from the other two locations. The branch diameter distribution indicated that the east location had larger branch size, while branches in middle and west site had smaller sizes. This study highlights the range of branch variability within locations, but indicates that Norway spruce branch biomass in Norway may be considered as a valuable raw material.

To document

Abstract

Adapting to changing climate is essential for individuals and communities to sustain their livelihoods. Improving adaptive capacity at various levels is essential, and this can be done by strengthening ongoing initiatives, introducing new measures, training and capacity building. One of the main focus areas of the Climarice projects is to train the farmers on implementing various adaptation technologies that would increase the water and nutrient use efficiencies at field level. Climarice project scientists have identified various technologies such as usage of biofertilizers such as blue green algae and azolla to improve the nutrient use efficiency in paddy cultivation, application of green manures to enhance soil organic matter content, introduction of short duration rice cultivar during delayed monsoon, cultivation of alternate crops for income generation, System of Rice intensification for enhancing water and grain productivity, usage of bio control agents such as Trichoderma and Pseudomonas for eco friendly management of pest and diseases etc.,. For the successful implementation of these technologies at field level, the farmers have to be given with training and exposure visits. ClimaRice project scientists have undertaken many capacity building programmes to farmers of Cauvery basin on various adaptation technologies and these programmes have created confidence among the farmers. Many farmers who have attended the training programmes are following the technologies with great interest. A summary of the training programmes and their impact are furnished in this report.

To document

Abstract

Fungal decay considerably affects the macroscopic mechanical properties of wood as a result of modifications and degradations in its microscopic structure. While effects on mechanical properties related to the stem direction are fairly well understood, effects on radial and tangential directions (transverse properties) are less well investigated. In the present study, changes of longitudinal elastic moduli and stiffness data in all anatomical directions of Scots pine (Pinus sylvestris) sapwood which was degraded by Gloeophyllum trabeum (brown rot) and Trametes versicolor (white rot) for up to 28 weeks have been investigated. Transverse properties were found to be much more deteriorated than the longitudinal ones. This is because of the degradation of the polymer matrix between the cellulose microfibrils, which has a strong effect on transverse stiffness. Longitudinal stiffness, on the other hand, is mainly governed by cellulose microfibrils, which are more stable agains fungal decay. G. trabeum (more active in earlywood) strongly weakens radial stiffness, whereas T. versicolor (more active in latewood) strongly reduces tangential stiffness. The data in terms of radial and tangential stiffnesses, as well as the corresponding anisotropy ratios, seem to be suitable as durability indicators of wood and even allow conclusions to be made on the degradation mechanisms of fungi.