Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

Sammendrag

Fusarium and Microdochium may cause seedling blight and poor germination of cereal seeds. However, indications of poor survival of Fusarium in seed and improved germination after some months of storage have been observed. A study was carried out to investigate if seed storage can contribute to improved seed quality. Samples from seed lots of barley, oats and spring wheat were tested for germination capacity and Fusarium /Microdochium infection frequencies a few days after harvest, and after 5, 12 and 15 months of storage. In barley, the average germination percentage increased slightly, from 92% at harvest to 95% after five months of storage. In oats, the average germination percentage increased from 82% to 85% during the first five months. In spring wheat, the average germination percentage was reduced from 81% at harvest to 67% after five months. In barley and oats, average Fusarium /Microdochium frequencies were reduced during storage, with the highest reduction observed during the first five months (from 50% to 37%, and from 60% to 46%, barley and oats respectively). In spring wheat, no significant reduction in average infection level was recorded (58% at harvest, 50% after 15 months of storage). There was however, variation between seed lots in all three cereal species in both germination percentage and Fusarium /Microdochium frequencies during the storage period. It is concluded that storage of barley and oats seeds for 5 months after harvest may in some cases increase the seed quality and thereby meet the certification requirements of minimum 85% germination.

Sammendrag

The market for herbage seed straw has diminished in many seed-production areas due to less livestock. Seed growers are therefore looking for alternatives to straw removal, which up to now has been the most common practice. During 2000–2006, different alternative straw chopping methods, both at the back of the combiner and with a tractor-mounted flail-chopper, and field burning strategies were evaluated in seed crops of timothy (Phleum pratense) and meadow fescue (Festuca pratensis) in southeast Norway. The requirement for an extra N input in autumn (30–40 kg ha-1) when practising straw chopping was also examined. Compared to straw removal, straw chopping at the back of the combiner during seed harvest did not reduce seed yield in the following year as long as stubble height was low (<10 cm in timothy) and the straw spread uniformly in the field. On average, seed yield was 1–4% and 1–9% higher compared to straw removal in timothy and meadow fescue, respectively. If the chopped straw was spread unevenly, or long stubble was left at combining, it is recommended to use a tractor-mounted flail-chopper after harvest. The experiments did not provide any support for an extra input of nitrogen in autumn, either in timothy or meadow fescue, when the straw was chopped rather than removed. Burning of stubble and straw soon after seed harvest was another efficient clean-up method after harvest, which increased seed yield 9–15% and 17–20% compared to straw removal in the two species, respectively. However, as the burning method is risky and causes smoke emissions, it is normally not recommended. It is concluded that for most seed growers, the most effective, least laborious and most environment-friendly alternative to straw removal will be to chop the straw at the back of the combiner during seed harvest.

Til dokument

Sammendrag

Schistidium marginale is described as a new species from several European states including Austria, Georgia, Italy, Macedonia, Spain, Switzerland and Turkey. The species is fully illustrated, its affinities are discussed in detail and its current distribution is mapped. The new species is closely related to S. confertum and S. echinatum from which it differs in having a coarser and thicker costa which is 3–4-stratose in mid-leaf and 4-layered at the base; strongly thickened, 2–4-stratose and (1–)2–5-seriate leaf margins; and a thicker and stiffer leaf hair-point. It clearly belongs to Schistidium Bruch & Schimp. sect. Conferta (Vilh.) Ochyra on account of the distinct 3–6(–7)-seriate basal marginal border of quadrate to short-rectangular, often subhyaline cells with distinctly thickened transverse walls.

Til dokument

Sammendrag

Biochar is a carbon-rich solid product obtained by pyrolysis of biomass. Here, we investigated multiple biochars produced under slow pyrolysis (235–800 °C), flash carbonization, and hydrothermal carbonization (HTC), using Scanning Electron Microscope—Energy Dispersive X-ray Spectroscopy (SEM-EDX) in order to determine whether SEM-EDX can be used as a proxy to characterize biochars effectively. Morphological analysis showed that feedstock has an integrated structure compared to biochar; more pores were generated, and the size became smaller when the temperature increased. Maximum carbon content (max. C) and average carbon content (avg. C) obtained from SEM-EDX exhibited a positive relationship with pyrolysis temperature, with max. C correlating most closely with dry combustion total carbon content. The SEM-EDX O/C ratios displayed a consistent response with the highest treatment temperature (HTT). The study suggests that SEM-EDX produces highly consistent C, oxygen (O), and C/O ratios that deserve further investigation as an operational tool for characterization of biochar products.

Sammendrag

The present agricultural landscape reflects a long history of changing land-use and farming practices, caused by e.g. technological development, urbanization processes and climate changes. A deeper understanding of how agricultural practices have altered the landscape is essential for the management of biodiversity and conservation of semi-natural grasslands. In this study, we explore the influence that changes in agricultural land-use, and grassland abandonment, have on successional changes in vegetation. The distribution, patch size, and plant species composition of semi-natural grasslands in a Central Norwegian agricultural landscape were mapped during two summers. Semi-natural grassland species decreased from managed grasslands to late regrowth successional phase, while number of forest species increased. Structural changes, e.g. increasing litter and tree cover, were also seen along the succession. Variation in species composition was related to management intensity and successional phase along the main gradient.