Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

To document

Abstract

Dieback of European ash was first observed in Europe in the early 1990s. The disease is caused by the invasive ascomycete Hymenoscyphus fraxineus, proposed to originate from Far East Asia, where it has been considered a harmless saprotroph. This study investigates the occurrence of H. fraxineus in tissues of local ash species in the Russian Far East, and assesses its population-specific genetic variation by ITS sequencing. Shoot dieback symptoms, characteristic of H. fraxineus infection on European ash, were common, but not abundant, on Fraxinus mandshurica and Fraxinus rhynchophylla trees in Far East Russia. High levels of pathogen DNA were associated with necrotic leaf tissues of these ash species, indicating that the local H. fraxineus population is pathogenic to their leaves. However, the low levels of H. fraxineus DNA detected in shoots with symptoms, the failure to isolate this fungus from such tissues, and the presence of other fungi with pathogenic potential in shoots with symptoms indicate that local H. fraxineus strains may not be responsible (or their role is negligible) for the observed ash shoot dieback symptoms in the region. Conspicuous differences in ITS rDNA sequences detected between H. fraxineus isolates from Russian Far East and European populations suggest that the current ash dieback epidemic in Europe might not directly originate from the Russian Far East. Revision of the herbarium material shows that the earliest specimen of H. fraxineus was collected in 1962 from the Russian Far East and the oldest H. fraxineus specimen of China was collected in 2004.

Abstract

The necrotrophic fungus Drechslera teres causes net blotch disease in barley by secreting necrotrophic effectors (NEs) which, in the presence of corresponding host susceptibility factors (SF), act as virulence factors in order to enable host colonization. At present the resistance within most Norwegian cultivars is insufficient. This study aims at detecting QTL associated with resistance and susceptibility in the Nordic barley breeding material and at discovering new NE _ SF interactions. This knowledge together with an understanding of the genetic background of the Norwegian net blotch population will be utilized to speed up resistance breeding. Resistance of a segregating mapping population of a cross between the closely related Norwegian varieties Arve and Lavrans to three Norwegian D. teres isolates was assessed at seedling stage in the greenhouse and in adult plants in the field. QTL mapping revealed four major QTL on chromosomes 4H, 5H, 6H and 7H. The 5H and 6H QTL accounted for up to 47% and 14.1% of the genetic variance, respectively, and were found both in seedlings and adult plants with the latter QTL being an isolate-specific association. The high correlation of seedling and adult resistance (R2=0.49) suggests that components of adult plant resistance can be predicted already at the seedling stage. Selected isolates and their culture filtrates will be screened on selected barley lines to characterize novel NE - SF interactions and to map the corresponding sensitivity loci. Effector protein candidates will be purified and further analysed to verify their effect on disease development. Additionally, 365 Norwegian D. teres isolates and a selection of globally collected isolates are currently being ddRAD genotyped in order to obtain SNP markers to study the genetic diversity and population structure of the current Norwegian fungal population. This data will also allow us to perform Genome Wide Association Studies (GWAS) to identify potential novel NE genes.

To document

Abstract

Agricultural management practices are among the major drivers of agricultural nitrogen (N) loss. Legislation and management incentives for measures to mitigate N loss should eventually be carried out at the individual farm level. Consequently, an appropriate scale to simulate N loss from a scientific perspective should be at the farm scale. A data set of more than 4000 agricultural fields with combinations of climate, soils and agricultural management which overall describes the variations found in the Baltic Sea drainage basin was constructed. The soil–vegetation–atmosphere model Daisy (Hansen et al. 2012) was used to simulate N loss from the root zone of all agricultural fields in the data set. From the data set of Daisy simulations, we identified the most important drivers for N loss by multiple regression statistics and developed a statistical N loss model. By applying this model to a basin-wide data set on climate, soils and agricultural management at a 10 × 10 km scale, we were able to calculate root-zone N losses from the entire Baltic Sea drainage basin and identify N loss hot spots in a consistent way and at a level of detail not hitherto seen for this area. Further, the root-zone N loss model was coupled to estimates of nitrogen retention in catchments separated into retention in groundwater and retention in surface waters allowing calculation of the coastal N loading.

Abstract

Wood protection against fungal decay is mainly based on chemical protection. Nontoxic protection methods have become more important in Europe due to environmental concerns. A method using electric fields to inhibit wood decay by fungi has been investigated in laboratory trials and wood mass loss and moisture content after exposure to fungal attack were determined. The results show significantly reduced mass loss for wood samples exposed to a low pulsed electric field (LPEF), while wood samples connected to alternating and direct current displayed higher mass loss compared to LPEF. Changing the electrode material reduced the mass increase due to metal ion transfer into the wood samples for LPEF-exposed samples. The use of conductive polymer instead of metal electrodes and carbon fibers was preferable as no ions were transferred and the integrity of the material persisted. Decay of pre-exposed wood samples to white rot could be stopped or slowed down by means of LPEF.