Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2016
Abstract
No abstract has been registered
Abstract
The necrotrophic fungus Drechslera teres causes net blotch disease in barley by secreting necrotrophic effectors (NEs) which, in the presence of corresponding host susceptibility factors (SF), act as virulence factors in order to enable host colonization. At present the resistance within most Norwegian cultivars is insufficient. This study aims at detecting QTL associated with resistance and susceptibility in the Nordic barley breeding material and at discovering new NE _ SF interactions. This knowledge together with an understanding of the genetic background of the Norwegian net blotch population will be utilized to speed up resistance breeding. Resistance of a segregating mapping population of a cross between the closely related Norwegian varieties Arve and Lavrans to three Norwegian D. teres isolates was assessed at seedling stage in the greenhouse and in adult plants in the field. QTL mapping revealed four major QTL on chromosomes 4H, 5H, 6H and 7H. The 5H and 6H QTL accounted for up to 47% and 14.1% of the genetic variance, respectively, and were found both in seedlings and adult plants with the latter QTL being an isolate-specific association. The high correlation of seedling and adult resistance (R2=0.49) suggests that components of adult plant resistance can be predicted already at the seedling stage. Selected isolates and their culture filtrates will be screened on selected barley lines to characterize novel NE - SF interactions and to map the corresponding sensitivity loci. Effector protein candidates will be purified and further analysed to verify their effect on disease development. Additionally, 365 Norwegian D. teres isolates and a selection of globally collected isolates are currently being ddRAD genotyped in order to obtain SNP markers to study the genetic diversity and population structure of the current Norwegian fungal population. This data will also allow us to perform Genome Wide Association Studies (GWAS) to identify potential novel NE genes.
Authors
Ari Hietala Hugh Cross Halvor Solheim Volkmar Timmermann Nina Elisabeth Nagy Isabella Børja Adam Vivian-Smith Jørn Henrik SønstebøAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Tonje Økland Jørn-Frode Nordbakken Holger Lange Ingvald Røsberg O. Janne Kjønaas Kjersti Holt Hanssen Nicholas ClarkeAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
The growing season is longer than earlier and especially autumn temperatures have increased during the last 30 years (Hanssen‐Bauer et al 2015). A longer growing season increases the potential for forage production as an earlier spring, and warmer autumn implies that farmers can take more cuts with larger yields than earlier. Nevertheless, a warmer autumn can promote considerable regrowth after the last cut, and farmers report that they are uncertain if this regrowth should be harvested. The cost of harvesting forage is high, and feed quality of late harvested forage may be sub‐optimal. Changing precipitation patterns where there may be more episodes of heavy rains during autumn, late harvesting of grass swards can increase the risk of soil compaction and damage plant cover. This was the background to a study where we examine how different harvest time in autumn affects overwintering and yields the following year. We have established randomized block field experiments with 3 replicates in established leys dominated by timothy (Phleum pratense L.) at two sites in Norway in 2015; Kvithamar 63o29’N, 10o53’E, and Holt 69o38’N, 18o57’E. In the Kvithamar field, the main harvests were made June 30 and August 10. Thereafter, in one treatment, plots were left unharvested till next spring, while in other treatments plots were cut 4, 6, 8 or 10 weeks after the second main harvest. At Holt, the first harvest was made July 7, and the second harvest either August 11 or August 27. The regrowth after these treatments were either left uncut or harvested 4, 6 or 8 weeks after the last main cut in August 10, or 6 weeks after the cut in August 28. Dry matter yields were measured from all cuts. The results were analysed using ANOVA with MiniTab. No significant differences in yields were found between the different cutting treatments at either site, even though temperatures were between 2.2‐ 2.5oC higher than normal (1961‐1990) in September and between 1.1‐1.6 warmer than normal in October. Global radiation decreases rapidly from September onwards, and is a limiting factor for the growth potential of timothy‐dominated leys. In spring, we will measure winter survival and growth rate and yields in all treatments. The results from these measurements will be presented at the conference.
Authors
Jørgen Todnem Tor LunnanAbstract
No abstract has been registered
Abstract
No abstract has been registered