Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

There is a large potential in Europe for valorization in the vegetable food supply chain. For example, there is occasionally overproduction of tomatoes for fresh consumption, and a fraction of the production is unsuited for fresh consumption sale (unacceptable color, shape, maturity, lesions, etc.). In countries where the facilities and infrastructure for tomato processing is lacking, these tomatoes are normally destroyed, used as landfilling or animal feed, and represent an economic loss for producers and negative environmental impact. Likewise, there is also a potential in the tomato processing industry to valorize side streams and reduce waste. The present paper provides an overview of tomato production in Europe and the strategies employed for processing and valorization of tomato side streams and waste fractions. Special emphasis is put on the four tomato-producing countries Norway, Belgium, Poland, and Turkey. These countries are very different regards for example their climatic preconditions for tomato production and volumes produced, and represent the extremes among European tomato producing countries. Postharvest treatments and applications for optimized harvest time and improved storage for premium raw material quality are discussed, as well as novel, sustainable processing technologies for minimum waste and side stream valorization. Preservation and enrichment of lycopene, the primary health promoting agent and sales argument, is reviewed in detail. The European volume of tomato postharvest wastage is estimated at >3 million metric tons per year. Together, the optimization of harvesting time and preprocessing storage conditions and sustainable food processing technologies, coupled with stabilization and valorization of processing by-products and side streams, can significantly contribute to the valorization of this underutilized biomass.

Abstract

Å bygge veksthus på tak i byer kan ha flere fordeler. Redusert avstand til forbrukere gir ferskere varer og mindre kostnader og forurensing forbundet med transport og lagring. Dette er spesielt viktig for byer som ligger langt fra der maten produseres. Veksthus i byer kan også gi den urbane befolkningen muligheten til å lære mer om hvordan mat dyrkes. Ved å bygge veksthus på tak istedenfor på bakken spares arealer som i stedet kan brukes til jordbruk, grøntområder eller andre typer boliger. Et veksthus på tak som er integrert med den øvrige bygningen, kan også utnytte varmen fra etasjene under, noe som vil være energibesparende.

2018

To document

Abstract

Non-destructive tools for evaluating the lycopene content in tomatoes are of great interest to the entire fruit chain because of an increasing demand for beneficial health products. With the aim of developing compact low-cost reflectance sensors for lycopene determination, we compared Partial Least Squares (PLS) prediction models by using either directional or total reflectance in the 500–750 nm range. Directional reflectance at 45° with respect to the LED lighting direction was acquired by means of a compact spectrometer sensor. Total reflectance was acquired through a 50-mm integrating sphere connected to a spectrometer. The analysis was conducted on two hydroponic greenhouse cultivated red tomato varieties, namely the large round ‘Dometica’ (average diameter: 57 mm) and the small cherry ‘Juanita’ (average diameter: 26 mm). For both varieties, the spectral variance of directional reflectance was well correlated to that of total reflectance. The performances of the PLS prediction models were also similar, with R2 of cross-validation between 0.73 and 0.81. The prediction error, relative to the mean lycopene content of full ripe tomatoes, was similar: i.e. around 16–17% for both varieties and sensors. Our results showed that directional reflectance measured by means of portable, low-cost and compact LED-based sensors can be used with an adequate precision for the non-destructive assessment of lycopene in tomatoes.

Abstract

Lunch canteens and their salad bars are an important arena for sales and consumption of vegetables including herbs. One major Norwegian canteen operator had a turnover of more than seven thousand tons of fresh vegetables in 2016, with lettuce, tomato, potato, cucumber and bell pepper being the most important species. A typical lunch meal included about 260 g vegetables including potatoes. Vegetables used in 450 canteens were either green, yellow, orange, red, purple/dark or colorless, and consisted of pigments of chlorophylls, carotenoids, anthocyanins and betalains. The total pigment content in the 60 most abundant vegetables was calculated to be 14.5-28.3 mg 100 g-1 FW. Of all vegetables in the canteens, 60% were found to be green. The intake of chlorophyll through one lunch meal was estimated to be 46 mg. Lettuce was found to be the single most important source of chlorophylls as this species was consumed in high amounts and made up 20% of the vegetables in a lunch meal. Carotenoids was found in all colored vegetables except the purple/dark ones and an estimate revealed an intake of 15 mg total carotenoids from lunch vegetables. Tomato was found to be the most important carotenoid source representing 44% of the total intake. Due to high pigment concentrations and popularity of red beets in the salad bars, the intake of betalains through a lunch meal was estimated to be 3 mg, similar to the total intake of anthocyanins from vegetable species.

To document

Abstract

The project “Sustainable food production through quality optimized raw-material production and processing technologies for premium quality vegetable products and generated by-products” [SUNNIVA] aimed at the development of a sustainable food system from production to consumption, addressing the entire food supply chain for the vegetables tomato and Brassicae. The goal was better utilisation of the vegetable raw materials, reduced energy and water consumption, higher profitability and healthier food. This was achieved by providing various valorisation strategies to reduce waste and limiting environmental impact. Preservation of the intrinsic health-beneficial phytochemicals present in the raw material in order to improve the nutritional properties of vegetable food products was central in the project. The project contained optimization of harvest time and pre-processing storage conditions, development of novel mild processing design based on modelling, and a two-track valorisation strategy. SUNNIVA has demonstrated how the various residual raw materials can be exploited to the full: Either directly for sustainable production of healthy food (as a refined product or an ingredient), or indirectly by bringing it back into the food chain (as organic fertilizers and soil amendment products) in order to generate renewed primary production with minimal environmental impact.