Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2021
Authors
Maria Papale Carmen Rizzo Gabriella Caruso Stefano Amalfitano Giovanna Maimone Stefano Miserocchi Rosabruna La Ferla Paul Eric Aspholm Franco Decembrini Filippo Azzaro Antonella Conte Marco Graziano Alessandro Ciro Rappazzo Angelina Lo Giudice Maurizio AzzaroAbstract
The effects of climate change-induced ice melting on the microbial communities in different glacial-fed aquatic systems have been reported, but seasonal dynamics remain poorly investigated. In this study, the structural and functional traits of the aquatic microbial community were assessed along with the hydrological and biogeochemical variation patterns of the Arctic Pasvik River under riverine and brackish conditions at the beginning (May = Ice-melt (−)) and during the ice-melting season (July = Ice-melt (+)). The microbial abundance and morphometric analysis showed a spatial diversification between the riverine and brackish stations. Results highlighted different levels of microbial respiration and activities with different carbon and phosphorous utilization pathways, thus suggesting an active biogeochemical cycling along the river especially at the beginning of the ice-melting period. At Ice-melt (−), Gammaproteobacteria and Alphaproteobacteria were dominant in riverine and brackish stations, respectively. Conversely, at Ice-melt (+), the microbial community composition was more homogeneously distributed along the river (Gammaproteobacteria > Alphaproteobacteria > Bacteroidetes). Our findings provide evidence on how riverine microbial communities adapt and respond to seasonal ice melting in glacial-fed aquatic ecosystems.
Authors
Trygve S. AamlidAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Nenad Potocic Volkmar Timmermann Mladen Ognjenovic Anne-Katrin Prescher Kai Schwärzel Marco FerrettiAbstract
No abstract has been registered
Authors
Volkmar TimmermannAbstract
No abstract has been registered
Authors
Motoaki Tojo Natsumi Fujii Hironori Yagi Yuki Yamashita Katsuyuki Tokura Kenichi Kida Akiho Hakoda Maria-Luz Herrero Tamotsu Hoshino Masaki UchidaAbstract
Globisporangium spp. are soil-inhabiting oomycetes distributed worldwide, including in polar regions. Some species of the genus are known as important plant pathogens. This study aimed to clarify the species construction of Globisporangium spp. and their long-term isolation pattern in Sanionia moss in Ny-Ålesund, Spitsbergen Is., Norway. Globisporangium spp. were isolated at two-year intervals between 2006 and 2018 at a Sanionia moss colony, Ny-Ålesund, Spitsbergen Is., Norway. The isolates were obtained by using three agar media and were identified based on sequences of the rDNA-ITS region and cultural characteristics. Most of the Globisporangium isolates obtained during the survey were identified into six species. All six species were grown at 0 °C on an agar plate and used to infect Sanionia moss at 4 and/or 10 °C under an in vitro inoculation test. The total isolation frequency of Globisporangium gradually decreased throughout the survey period. The isolation frequency varied among the six species, and four of the species that showed a high frequency in 2006 were rarely isolated after 2016. The results suggested that Globisporangium inhabiting Sanionia moss in Ny-Ålesund has a unique composition of species and that most of the species reduced their population over the recent decade.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Old trees are important for biodiversity, and the process of their identification is a critical process in their conservation. However, determining the tree age by core extraction, ring counts, and eventually, cross-dating by means of dendrochronology is labor-intensive and expensive. Here we examine the alternative method of estimating determining tree age by visual characteristics for old Norway spruce and Scots pine trees. We used forest stands previously identified as “Old tree habitats” by visual criteria in Norwegian boreal forests. The efficiency of this method was tested using pairwise comparison of the age of core samples from trees within these sites, and within neighboring sites. Age regression models were constructed from morphological traits and site variables to investigate how accurately old trees can be detected. Cored trees in the Old-tree habitats were on average 41.9 years older than compared to a similar selection of trees from nearby mature forests. Several characteristics such as bark structure, stem taper and visible growth eccentricities can be used to identify old Norway spruce and Scots pine trees. Old trees were often found on less productive sites. Due to the wide range of environments included in the study, we suggest that these findings can be generalized to other parts of the boreal zone.