Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2005
Abstract
No abstract has been registered
Abstract
Rhizoctonia solani was frequently isolated in the Italian Alps from ursery-grown European beech (Fagus sylvatica) seedlings displaying symptoms of cotyledon rot. Koch?s postulates were verified and mode of infection of the associated isolates was investigated with light and scanning electron microscopy. Population structure of the pathogen was investigated by scoring the anastomosis reaction type in pairings between different isolates from the same seedbed. One pathogen genotype showed a large distribution area within the seedbed, this implying that the inoculum had been building up in the seedbed over a longer time period. Hyphal anastomosis tests and sequence analysis of the internal transcribed spacer (ITS) region of ribosomal DNA indicated that the pathogen belongs to AG 2-1 of R. solani. ITS sequence analysis indicates that the isolates from beech are closely related to R. solani isolates causing a disease on tulip. The striking similarities between the two diseases are discussed.
Abstract
*Strawberry Fragaria × ananassa (cv. Korona) was inoculated with Botrytis cinerea by dipping berries in a conidial suspension. *Colonization by the pathogen was monitored using real-time PCR, ELISA and ergosterol assays, the first showing the highest sensitivity. The expression of pathogen B-tubulin and six polygalacturonases (Bcpg1-6) and three host defence genes (polygalacturonase-inhibiting protein (FaPGIP) and two class II chitinases) were monitored using real-time RT-PCR. *The maximum transcript levels of the host defence genes occurred at 16 h postinoculation (hpi) at the presumed initial penetration stage. The unique transcript profile of Bcpg2 over the 96-h incubation time and its high transcript levels relative to those of the other Bcpgs at 8-24 hpi suggest that the gene has a specific role in the penetration stage. *Bcpg1 was expressed constitutively at a relatively high level in actively growing mycelia throughout the experimental period. Comparison of the transcript profiles indicated that Bcpg1 and Bcpg3-6 were coordinately regulated.
Abstract
No abstract has been registered
Authors
Axel Schmidt Zeneli Gazmend Ari Hietala Carl Gunnar Fossdal Paal Krokene Erik Christiansen Jonathan GershenzonAbstract
No abstract has been registered
2004
Abstract
Pathogen colonization and transcript levels of three host chitinases,putatively representing classes I, II, and IV, were monitored with real-time PCR after wounding and bark infection by Heterobasidion annosum in 32-year-old trees of Norway spruce (Picea abies) with low (clone 409) or high (clone 589) resistance to this pathogen. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. At 14 days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for clone 589 but had progressed further into the host tissue in clone 409. Transcript levels of the class II and IV chitinases increased after wounding or inoculation, but the transcript level of the class I chitinase declined after these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in clone 589 than in similar sites in clone 409 3 days after inoculation. This difference was even more pronounced 2 to 6 mm away from the inoculation point, where no infection was yet established, and suggests that the clones differ in the rate of chitinase-related signal perception or transduction. At 14 days after inoculation, these transcript levels were higher in clone 409 than in clone 589, suggesting that the massive upregulation of class II and IV chitinases after the establishment of infection comes too late to reduce or prevent pathogen colonization.
Abstract
We have monitored the H. annosum colonization rate and expression of host chitinases in Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR. Ramets of two 32 -year-old clones differing in resistance were employed as host material and inoculation and wounding was performed. Quantification of fungal colonization: Multiplex real-time PCR detection of host and pathogen DNA was performed. Chitinase transcript levels were also monitored with real-time PCR. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak clone (409). Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class I chitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of chitinase-related signal perception. The spatiotemporal accumulation patterns obtained for the two clones used are consistent with their resistance classifications, these warranting further and more detailed studies on these chitinases.
Authors
Axel Schmidt K. Witzel Gazmend Zeneli D. Martin J. Bohlmann Paal Krokene Trygve Krekling Ari M. Hietala Carl Gunnar Fossdal Erik Christiansen Jonathan GershenzonAbstract
The study of conifer chemical defense has been dominated by investigations of oleoresin and its components. However, the actual function of resin components in plant defense and their mode of action is still uncertain, and the role of other defense compounds is relatively unexplored.We are studying the biochemical and molecular bases of chemical defenses, including terpenes, phenolics and chitinases, in Norway spruce (Picea abies) to learn more about how the accumulation of defense compounds is regulated, with the long-term goal of manipulating defense levels to test their function.Manipulation can be crudely accomplished by treatment with methyl jasmonate, which often mimics the general increases in defenses seen following herbivore or pathogen attack. Such treatment was shown to increase resistance to a fungal associate of bark beetles.To more conclusively test function, isolated genes of defense biosynthetic pathways are being transformed into Norway spruce to produce plants whose defense profiles are altered more precisely.
Abstract
Introduction: The objectives of the present study were to monitor H. annosum colonization rate (Hietala et al., 2003) and expression of host chitinases in clonal Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR.Material and MethodsInoculation experiment: Ramets of two 32 -year-old clones differing in resistance were employed as host material. Inoculation and wounding was performed. A rectangular strip containing phloem and cambium, with the inoculation site in the middle, was removed 3, 7 and 14 days after inoculation.Quantification of fungal colonizationMultiplex real-time PCR detection of host and pathogen DNA was performed (Hietala et al., 2003). Quantification of gene expression: Chitinase levels were monitored with Singleplex real-time PCR.Results and ConclusionsThe colonization profiles provided by the quantitative multiplex real-time PCR procedure (Hietala et al., 2003), when combined with spatial and temporal transcript profiling of 3 chitinases, provide a useful basis for identifying defense related genes, and for assessing their impact on pathogen colonization rates.Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak (409) clone.Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class I chitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of chitinase-related signalperception.
2003
Abstract
A multiplex real-time PCR assay was developed to monitor the dynamics of the Picea abies-Heterobasidion annosum pathosystem. Tissue cultures and 32-year-old trees with low or high resistance to this pathogen were used as the host material. Probes and primers were based on a laccase gene for the pathogen and a polyubiquitin gene for the host.The real-time PCR procedure was compared to an ergosterol-based quantification method in a tissue culture experiment, and there was a strong correlation product moment correlation coefficient, 0.908) between the data sets. The multiplex real-time PCR procedure had higher resolution and sensitivity during the early stages of colonization and also could be used to monitor the host.In the tissue culture experiment, host DNA was degraded more rapidly in the clone with low resistance than in the clone with high resistance. In the field experiment, the lesions elicited were not strictly proportional to the area colonized by the pathogen.Fungal colonization was more restricted and localized in the lesion in the clone with high resistance, hereas in the clone with low resistance, the fungus could be detected until the visible end of the lesion. Thus, the real-time PCR assay gives better resolution than does the traditionally used lesion length measurement when screening host clones for resistance.