Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

Wildlife species living in proximity with humans often suffer from various anthropogenic factors. Here, we focus on the endangered Saimaa ringed seal (Pusa hispida saimensis), which lives in close connection with humans in Lake Saimaa, Finland. This unique endemic population has remained landlocked since the last glacial period, and it currently consists of only ~400 individuals. In this review, we summarize the current knowledge on the Saimaa ringed seal, identify the main risk factors and discuss the efficacy of conservation actions put in place to ensure its long-term survival. The main threats for this rare subspecies are bycatch mortality, habitat destruction and increasingly mild winters. Climate change, together with small population size and an extremely impoverished gene pool, forms a new severe threat. The main conservation actions and priorities for the Saimaa ringed seal are implementation of fishing closures, land-use planning, protected areas, and reduction of pup mortality. Novel innovations, such as provisioning of artificial nest structures, may become increasingly important in the future. Although the Saimaa ringed seal still faces the risk of extinction, the current positive trend in the number of seals shows that endangered wildlife populations can recover even in regions with considerable human inhabitation, when legislative protection is combined with intensive research, engagement of local inhabitants, and innovative conservation actions. Such multifaceted conservation approaches are needed in a world with a growing human population and a rapidly changing climate.

To document

Abstract

In recent decades, a combination of increasing demand and economic globalisation has created a global market for elasmobranch products, especially the highly prized shark fins for Asian markets. Morphological species identification, as well as traditional cytochrome c oxidase subunit I (COI) barcoding of shark fins and other products, become challenging when in a processed state (such as dried or bleached shark fins). Here a mini-barcoding multiplex assay was applied to determine the species of origin in case studies from southern Africa involving confiscated shark fins in different states of processing. This highlights that the illegal shark fin trade in southern Africa to a large extent comprises threatened species. Matching of sequences of the confiscated fins against public databases revealed several threatened species, including the CITES-listed species Carcharodon carcharias, Carcharhinus longimanus, Isurus oxyrinchus, Rhynchobatus djiddensis and Sphyrna lewini. The findings highlight the need for improved trade monitoring, such as to eliminate illegal trade in shark fins, which can in part be achieved through more widespread genetic sampling of internationally traded products. However, a major limitation to DNA barcoding in general lies in the lack of curated voucher specimens available on public databases. To facilitate the application of molecular methods in a more comprehensive evaluation of elasmobranch trade regionally, a concerted effort to create reliable curated sequence data is recommended.

To document

Abstract

The common smooth-hound shark, Mustelus mustelus, is a widely distributed demersal shark under heavy exploitation from various fisheries throughout its distribution range. To assist in the development of appropriate management strategies, the authors evaluate stock structure, site fidelity and movement patterns along the species’ distribution in southern Africa based on a combination of molecular and long-term tag-recapture data. Eight species-specific microsatellite markers (N = 73) and two mitochondrial genes, nicotinamide adenine dehydrogenase subunit 4 and control region (N = 45), did not reveal any significant genetic structure among neighbouring sites. Nonetheless, tagging data demonstrate a remarkable degree of site fidelity with 76% of sharks recaptured within 50 km of the original tagging location. On a larger geographic scale, dispersal is governed by oceanographic features as demonstrated by the lack of movements across the Benguela-Agulhas transition zone separating the South-East Atlantic Ocean (SEAO) and South-West Indian Ocean (SWIO) populations. Microsatellite data supported very shallow ocean-based structure (SEAO and SWIO) and historical southward gene flow following the Agulhas Current, corroborating the influence of this dynamic oceanographic system on gene flow. Moreover, no movements between Namibia and South Africa were observed, indicating that the Lüderitz upwelling formation off the Namibian coast acts as another barrier to dispersal and gene flow. Overall, these results show that dispersal and stock structure of M. mustelus are governed by a combination of behavioural traits and oceanographic features such as steep temperature gradients, currents and upwelling systems.

To document

Abstract

The frequency and severity of outbreaks by pestiferous insects is increasing globally, likely as a result of human-mediated introductions of non-native organisms. However, it is not always apparent whether an outbreak is the result of a recent introduction of an evolutionarily naïve population, or of recent disturbance acting on an existing population that arrived previously during natural range expansion. Here we use approximate Bayesian computation to infer the colonization history of a pestiferous insect, the winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), which has caused widespread defoliation in northern Fennoscandia. We generated genotypes using a suite of 24 microsatellite loci and find that populations of winter moth in northern Europe can be assigned to five genetically distinct clusters that correspond with 1) Iceland, 2) the British Isles, 3) Central Europe and southern Fennoscandia, 4) Eastern Europe, and 5) northern Fennoscandia. We find that the northern Fennoscandia winter moth cluster is most closely related to a population presently found in the British Isles, and that these populations likely diverged around 2,900 years ago. This result suggests that current outbreaks are not the result of a recent introduction, but rather that recent climate or habitat disturbance is acting on existing populations that may have arrived to northern Fennoscandia via pre-Roman traders from the British Isles, and/or by natural dispersal across the North Sea likely using the Orkney Islands of northern Scotland as a stepping-stone before dispersing up the Norwegian coast. approximate bayesian computation, Quaternary climatic oscillations, Lepidoptera, population genetics

To document

Abstract

The effects of climate change-induced ice melting on the microbial communities in different glacial-fed aquatic systems have been reported, but seasonal dynamics remain poorly investigated. In this study, the structural and functional traits of the aquatic microbial community were assessed along with the hydrological and biogeochemical variation patterns of the Arctic Pasvik River under riverine and brackish conditions at the beginning (May = Ice-melt (−)) and during the ice-melting season (July = Ice-melt (+)). The microbial abundance and morphometric analysis showed a spatial diversification between the riverine and brackish stations. Results highlighted different levels of microbial respiration and activities with different carbon and phosphorous utilization pathways, thus suggesting an active biogeochemical cycling along the river especially at the beginning of the ice-melting period. At Ice-melt (−), Gammaproteobacteria and Alphaproteobacteria were dominant in riverine and brackish stations, respectively. Conversely, at Ice-melt (+), the microbial community composition was more homogeneously distributed along the river (Gammaproteobacteria > Alphaproteobacteria > Bacteroidetes). Our findings provide evidence on how riverine microbial communities adapt and respond to seasonal ice melting in glacial-fed aquatic ecosystems.