Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Material exiting the harvester is composed of chaff and straw. Chaff is a by-product of grain harvest comprises weed seeds and husk. Harvest Weed Seed Control (HWSC) systems aim at collecting and/or killing weed seeds in the chaff fraction during crop grain harvest. If chaff is removed or processed via impact mills or concentrated in a narrow zone in the field and collected, the overall weed infestation may be reduced in the following years. Chaff may be used as a new biomass feedstock, for example, as a renewable energy source, material for construction ( e.g. , insulating boards, cardboard, bedding), soil improvement ( e.g ., mulch, mushroom compost), and for agricultural purposes ( e.g. , weed growth inhibitor, animal diet). Using chaff directly is unfavorable because of its low bulk density. Therefore, compressing chaff into pellets can improve its handling. In this preliminary study, we assessed how pelletizing would affect the germinability of weed seeds in the chaff pellets. Whole wheat chaff and fine wheat chaff sieved were mixed with seeds of the two weed species scentless mayweed ( Tripleurospermum inodorum (L.) Sch.Bip.) and cornflower ( Centaurea cyanus L.), respectively. While 22% of T. inodorum seeds and 59% of C. cyanus seeds in wheat chaff samples were able to germinate, no weed seeds germinated from moist pelletized original and fine wheat chaff samples. The study indicates a low risk of spreading weed seeds with pelletized chaff probably because the heating during the pelletizing process kills the weed seeds.

To document

Abstract

An essential prerequisite to safeguard pollinator species is characterisation of the multifaceted diversity of crop pollinators and identification of the drivers of pollinator community changes across biogeographical gradients. The extent to which intensive agriculture is associated with the homogenisation of biological communities at large spatial scales remains poorly understood. In this study, we investigated diversity drivers for 644 bee species/morphospecies in 177 commercial apple orchards across 33 countries and four global biogeographical biomes. Our findings reveal significant taxonomic dissimilarity among biogeographical zones. Interestingly, despite this dissimilarity, species from different zones share similar higher-level phylogenetic groups and similar ecological and behavioural traits (i.e. functional traits), likely due to habitat filtering caused by perennial monoculture systems managed intensively for crop production. Honey bee species dominated orchard communities, while other managed/manageable and wild species were collected in lower numbers. Moreover, the presence of herbaceous, uncultivated open areas and organic management practices were associated with increased wild bee diversity. Overall, our study sheds light on the importance of large-scale analyses contributing to the emerging fields of functional and phylogenetic diversity, which can be related to ecosystem function to promote biodiversity as a key asset in agroecosystems in the face of global change pressures.

To document

Abstract

The COVID-19 pandemic, surprised many through its impact on the food systems, resulting in collapses in the food production value chains and in the integrated pest disease management sector with fatal outcomes in many places. However, the impact of COVID-19 and the digital experience perspective on Integrating Pest Management (IPM) is still yet to be understood. In Africa, the impact was devastating, mostly for the vulnerable smallholder farm households, who were rendered unable to access markets to purchase inputs and sell their produce during the lockdown period. By using a holistic approach the paper reviews different Information and Communications Technologies (ICTs), digitalization, and how this enhanced the capacity of smallholder farmers resilient, and inform their smart-IPM practices in order to improve food systems' amidst climate change during and in the post-COVID-19 period. Different digital modalities were adopted to ensure continuous food production, access to inputs and finances, and selling surplus production among others. This was largely possible by using ICTs to deliver these needed services digitally. The study shares contributions and capacity perspectives of ICTs for empowering smallholder farmers to boost the resilience of their food systems based on COVID-19 successful experiences. Thus digital solutions must be embraced in the delivery of extension service on pest management and good agronomic practices, money transfers for purchasing inputs, receiving payment for sold farm produce, and markets information exchange. These are key avenues through which digital solutions strategically supported smallholder-based food systems through the pandemic.

To document

Abstract

Elymus repens is a problematic perennial weed in annual crops, grasslands and leys. Rhizome fragmentation by vertical disking can potentially reduce E. repens abundance with minimal tillage, but data are lacking on its efficiency in forage production. In a two-year study (2017–2018, 2018–2019) conducted in two forage grass-clover leys that were mostly weed-free except for large E. repens populations, this study examined effects on forage yield, botanical composition, and E. repens rhizome biomass of rhizome fragmentation at significant growth initiation in spring (early rhizome fragmentation, ERF) and/or when conditions allowed after the first forage cut (late rhizome fragmentation, LRF). Cold, wet springs and hard, dry soil in summer delayed treatment in both treatment years, to late spring (ERF) and late summer/early autumn (LRF). In the treatment year, ERF reduced first-cut forage yield by 44% compared with no rhizome fragmentation, while LRF decreased second- and third-cut yield by 24% and 53%, respectively. In the year after treatment, ERF increased total forage yield by on average 10%, while LRF had no effect. Over both years, combined forage yield was reduced by 11% by ERF and 4% by LRF. Both treatments reduced E. repens rhizome biomass, but inconsistently (ERF by 25% in one year only, LRF by 24% at one of two sites). ERF reduced E. repens incidence in forage by 10% in the treatment year, but had no effect in the following year. Thus, rhizome fragmentation by vertical disking can reduce E. repens abundance in grass-clover leys, but the effect is inconsistent and forage yield can be impaired, especially in swards with much E. repens. Moreover, disking is hampered by hard, dry soil conditions.

To document

Abstract

Bark beetle (Ips typographus) outbreaks have the potential to damage large areas of spruce-dominated forests in Scandinavia. To define forest management strategies that will minimize the risk of bark beetle attacks, we need robust models that link forest structure and composition to the risk and potential damage of bark beetle attacks. Since data on bark beetle infestation rates and corresponding damages does not exist in Norway, we implement a previously published meta-model for estimating I. typographus damage probability and intensity. Using both current and projected climatic conditions we used the model to estimate damage inflicted by I. typographus in Norwegian spruce stands. The model produces feasible results for most of Norway’s climate and forest conditions, but a revised model tailored to Norway should be fitted to a dataset that includes older stands and lower temperatures. Based on current climate and forest conditions, the model predicts that approximately nine percent of productive forests within Norway’s main spruce-growing region will experience a loss ranging from 1.7 to 11 m3/ha of spruce over a span of five years. However, climate change is predicted to exacerbate the annual damage caused by I. typographus, potentially leading to a doubling of its detrimental effects.