Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2013
Authors
Lars Qviller Nina Risnes Olsen Kim Magnus Bærum Erling Meisingset Leif Egil Loe Bjørnar Ytrehus Hildegunn Viljugrein Atle MysterudAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Ragnhild NærstadAbstract
No abstract has been registered
Authors
Børge HolenAbstract
No abstract has been registered
Authors
P. Gomez-Aledo M. Balderacchi P Benoit Randi Bolli Ole Martin Eklo Jens Kværner V. Pot M TrevisanAbstract
No abstract has been registered
Authors
Ole Martin EkloAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
B. Dumont Anna Thorhallsdottir A. Faruggia Ann NorderhaugAbstract
No abstract has been registered
Authors
Jonathan Lenoir Bente Jessen Graae Per Arild Aarrestad Inger Greve Alsos William Scott Armbruster Gunnar Austrheim Claes Bergendorff Harry John Betteley Birks Kari Anne Bråthen Jörg Brunet Hans Henrik Bruun Carl Johan Dahlberg Guillaume Decocq Martin Diekmann Mats Dynesius Rasmus Ejrnæs John-Arvid Grytnes Kristoffer Hylander Kari Klanderud Miska Luoto Ann Milbau Mari Moora Bettina Nygaard Arvid Odland Virve Ravolainen Stefanie Reinhardt Sylvi Marlen Sandvik Fride Høistad Schei James David Mervyn Speed Unn Tveraabak Vigdis Vandvik Liv Guri Velle Risto Virtanen Martin Zobel Jens-Christian SvenningAbstract
Recent studies from mountainous areas of small spatial extent (<2,500 km2) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2,500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT), and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1,000-m2 units (community-inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1-km2 units; (2) the relationship between CiT range and topographically- and geographically-derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100-km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km2 units peaked at 60-65°N and increased with terrain roughness, averaging 1.97°C (SD = 0.84°C) and 2.68°C (SD = 1.26°C) within the flattest and roughest units, respectively. Complex interactions between topography-related variables and latitude explained 35% of variation in growing-season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-season CiT within 100-km2 units was, on average, 1.8 times greater (0.32°C km-1) than spatial turnover in growing-season GiT (0.18°C km-1). We conclude that thermal variability within 1-km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
Abstract
No abstract has been registered