Jørund Rolstad
Head of Department/Head of Research
Authors
Vilde Lytskjold Haukenes Johan Asplund Line Nybakken Jørund Rolstad Ken Olaf Storaunet Mikael OhlsonAbstract
No abstract has been registered
Authors
Ignacio Sevillano Aksel Granhus Clara Antón Fernandéz Heleen de Wit Fride Høistad Schei Rannveig Margrete Jacobsen Ulrika Jansson Asplund Heikki Korpunen Christian Wilhelm Mohr Jenni Nordén Jørund Rolstad Svein Solberg Ken Olaf Storaunet Marta VergarecheaAbstract
There is an increasing interest in continuous cover forestry (CCF) as an alternative to clearcutting to promote multi-objective forests and preserve continuous maintenance of forest cover. Here, we assessed the effect that an increased use of CCF harvesting methods (shelterwood and selection cutting) in Norwegian forests can have on carbon sequestration. Thus, we simulated CO2 uptake in Norwegian forest stands throughout the 21st century under three scenarios that represent different levels of clearcutting and CCF harvesting methods, keeping the annual harvest volumes constant across all scenarios. The three scenarios are: 1) Business-as-usual (reference scenario where 3.5% of the harvested volume is obtained using CCF harvesting methods); 2) Harvested volume using CCF harvesting methods is increased to 15%; 3) Harvested volume using CCF harvesting methods is increased to 25%. Increasing the proportion of CCF would increase CO2 removals in the long-term (2100), resulting in an additional uptake of nearly 32 and 24 Tg CO2 when increasing CCF up to 25% and 15%, respectively. However, the simulations also showed that to be able to harvest the same timber volume as in the reference scenario that reflects current practice, an increased proportion of CCF would also require logging on a larger proportion of the forest area. CCF could have also positive implications for certain aspects of biodiversity, such as species that require shaded conditions, but harvesting across a larger total area could negatively impact other animals, plants and fungi.
Authors
Vilde Lytskjold Haukenes Johan Asplund Lisa Åsgård Jørund Rolstad Ken Olaf Storaunet Mikael OhlsonAbstract
Fire in the boreal forests emits substantial amounts of organically bound carbon (C) to the atmosphere and converts a fraction of the burnt organic matter into charcoal, which in turn is highly refractory and functions as a long-term stable C pool. It is well established that the boreal forest charcoal pool is sufficiently large to play a significant role in the global C cycle. However, there is a need for spatially representative estimates of how large proportions of the forest floor C pool are made up of charcoal across different plant communities in the boreal forest ecosystem. Thus, we have quantified the amounts of C separately in charcoal and the organic layers of the forest floor across fine spatial scales in a boreal forest landscape with a well-documented fire history. We found that the proportion of charcoal C made up an average of 1.2% of the total forest floor C, and the charcoal proportions showed a high small-scale spatial variability and were concentrated in the organic–mineral soil interface. Proportions of charcoal C decreased with increasing time since last fire. Deeper soils, denser soils, and local concave areas had the highest proportions of charcoal C, whereas historical fire frequencies and current differences in vegetation did not relate to the proportions of charcoal C.