Jørund Rolstad

Research Professor

(+47) 481 33 532
jorund.rolstad@nibio.no

Place
Ås H8

Visiting address
Høgskoleveien 8, 1433 Ås

To document

Abstract

Small mammals, especially microtine rodents, play an important role in the dynamics of boreal forest ecosystems. Even-aged forest management, in which old, semi-natural forests are converted to clear-cuts and culturally regenerated stands, is expected to have pronounced impact on the abundance and composition of this group of animals due to changes in the understory vegetation. During a 39 year-period we sampled autumn numbers of small mammals in uncut, semi-natural old forest and in recent clearcuts, supplemented by a 7-year sample from middle-aged plantations. Field voles Microtus agrestis were almost exclusively trapped in clearcuts. Bank voles Myodes glareolus dominated in the old forest, but reached equal or higher densities than field voles in clearcuts. Here, their combined abundance exceeded that of bank voles in old forest. Some years, wood lemmings Myopus schisticolor contributed significantly to vole abundance in old forest. Other rodents Apodemus spp. were rarely captured, mainly in clearcuts, and shrews Sorex spp. numbered < 15 percent of the total number of captured animals. Throughout the whole period we discerned 11 vole cycles, with highest peaks in bank voles in old forest. After high numbers during the 1980s, abundances of all species fell markedly during the 1990s, most distinctively in clearcuts, where the field vole almost totally disappeared. From the late 2000s, abundances of all species returned to pre-1990 levels and beyond. In the early and late periods, combined vole numbers were 26% higher in clearcuts compared to old forest, whereas the opposite was true in the middle period. In middle-aged plantations, bank voles numbered only one third of what it was in clearcuts and old forest, and other voles were rarely trapped. The results support the general notion that bank voles thrive in bilberry-rich, older forest and field voles in grass-dominated habitat. Contrary to general assertions, bank vole was abundant also in clearcuts, possibly due to invasion from surrounding old forest, but peak densities were lower than in old forest, possibly due to suppression by field voles. The variation of small mammals in forest age classes concurred closely with recent results reported from Finland. On a landscape scale, the results from these two and other studies predict that the total biomass of small rodents will be reduced by even-aged forest management, not because of conversion of older, semi-natural forest to clearcuts, but because of a decline in numbers in middle-aged and older, secondary forests.

To document

Abstract

In spite of its important role as predator of small game species, estimating the density of red fox Vulpes vulpes has been hampered by the species’ highly variable ranging pattern and elusive behavior. DNA analysis from scats combined with spatially explicit capture–recapture (SECR) modeling might remedy this. In a 50-km2 coniferous forest in southeast Norway, we collected scats on logging roads in late winter. DNA was extracted, amplified, and genotyped using 11 microsatellite markers. Of 184 samples collected, 126 were genotyped successfully, of which 46 (36.5%) produced individual genetic profiles. Twenty-five of these were different individuals: 13 females and 12 males. Nine of them were identified in multiple scats; mean recapture rate among all was 1.8/animal. Applying a conventional capture–recapture model (CAPWIRE) to the genotyped samples, 36 (95% CI 26–52) different individuals were estimated to have been present in the area during the sampling period. For estimating population density, we constructed three differently sized occupancy areas based on distances between recaptures, viz. ½ and 1/1 mean maximum distance moved (MMDM) and the local convex hull home range method (LoCoH). Areas varied from 60 km2 (½MMDM) to 112 km2 (MMDM), producing density estimates of 0.60 and 0.32 foxes/km2, respectively; the 95% LoCoH range method produced an estimate of 0.44 animals/km2 . Based on SECR modeling, the density was estimated at 0.38 (95% CI 0.21–0.70) animals/km2 . Smaller confidence intervals are expected with more appropriate sampling design than used in this pilot study.

To document

Abstract

Global warming is predicted to adversely affect the reproduction of birds, especially in northern latitudes. A recent study in Finland inferred that declining populations of black grouse, Tetrao tetrix, could be attributed to advancement of the time of mating and chicks hatching too early—supporting the mismatch hypothesis. Here, we examine the breeding success of sympatric capercaillie, T. urogallus, and black grouse over a 38-year period in southeast Norway. Breeding season temperatures increased, being most pronounced in April. Although the onset of spring advanced nearly three weeks, the peak of mating advanced only 4–5 days. In contrast to the result of the Finnish study, breeding success increased markedly in both species (capercaillie: 62%, black grouse: 38%). Both brood frequency and brood size increased during the study period, but significantly so only for brood frequency in capercaillie. Whereas the frequency of capercaillie broods was positively affected by rising temperatures, especially during the pre-hatching period, this was not the case in black grouse. Brood size, on the other hand, increased with increasing post-hatching temperatures in both species. Contrary to the prediction that global warming will adversely affect reproduction in boreal forest grouse, our study shows that breeding success was enhanced in warmer springs.

To document

Abstract

Knowing the historical variation in fire regimes is instrumental in managing forests today and in predicting what may happen in the future. By cross-dating 745 fire scars in 378 samples of remnant Scots pines, we delineated 254 individual forest fires during the past 700 years in a 74-km2 section of Trillemarka-Rollagsfjell Nature Reserve in south-central Norway. Fire sizes, numbers, burn rates, and frequencies were compared with historical climate proxies, vegetation maps, and written sources. The results revealed patterns consistent with a predominantly climate-driven fire regime up to 1625, followed by periods of strong anthropogenic influence that increased fire frequency during 1600–1700s and diminished fires during 1800–1900s. This was documented by an abrupt increase in number of small fires from the early 1600s that markedly shortened fire intervals from a median of 73 to 37 yr. This shift in fire frequency coincided with a sudden appearance of early-season fires from 1625 and onward. Whereas late-season burn rate increased with summer temperature, no such relationship was found for early-season fires. These results were corroborated by written sources that describe anthropogenic forest fires and slash-and-burn cultivation expanding with the increasing population from the late 1500s and subsequently diminishing due to increasing timber values during 1700–1800s. Whereas human activity strongly influenced the fire regime at multidecadal to centennial scales, it was the interannual variability in climate that triggered large fire events, especially during the pre-1625 period. Prior to 1625, the percentage of years with fire tripled from 7% during cold summers (10–12°C) to 21% during warm summers (14–16°C). Burn rate increased even more, from 0.01% to 1.3% for the same temperature intervals. Ecologically, the post-1625 period is remarkable in such a way that human activity, first by greatly increasing fire frequency and subsequently almost eradicating fires, possibly influenced the fire regime to such an extent that it may be unprecedented for millennia.

Abstract

Usnea longissima Ach. is a circumboreal epiphytic lichen draping tree canopies in moist coastal and mountainous forests. It is extinct from many European and North-American localities, presumably due to industrial forestry and air pollution, but still has a stronghold in parts of Scandinavia and U.S. and Canadian Pacific Northwest. In 2005/06 we used a comparative and retrospective approach to evaluate how present and historic tree and stand characteristics influenced the occurrence and abundance of the lichen (Storaunet et al. 2008). In 2012, we re-inventoried ten Norway spruce forest stands with 401 U. longissima-bearing trees and recorded changes in the number of U. longissima thalli. Seven of the stands had been experimentally, selectively logged 5–8 years before, where the lichen-bearing trees had been marked in the field and were avoided during the logging operation. Total number of lichen-bearing trees decreased slightly (2.9%), whereas the number of thalli had increased with 34%. Number of thalli increased more where the forest was open (low basal area, m2ha-1) whether or not the low tree density was caused by the logging events. At high tree densities the change in number of thalli was negligible. We suggest that selective logging, securing lichen-bearing trees, may be a viable management option to keep tree density from becoming too dense, thereby enhancing growth and establishment of U. longissima.

Abstract

Old trees represent key features of old-growth forests and are important elements for maintaining biodiversity. Due to extensive human exploitation of Fennoscandian boreal forests during several centuries, old Norway spruce trees have become exceedingly rare. We analysed 91 spruce trees in Trillemarka Nature Reserve, southern Norway, to investigate (1) the maximum age of living trees, (2) growth rates of different-age trees and (3) growth trends in very old trees. Increment cores were taken from trees in selected old-growth stands located at 700–850 m a.s.l. Twelve spruce trees had an estimated total age of >400 years, the oldest one being 529 years and presumably the oldest known still living Norway spruce in northern Europe. A negative relationship between growth rate (basal area increment) and total age was observed, being most distinct for growth rates at 126–275 years and less marked for early stage growth (26–75 years). Thus, high age apparently was related more to low growth rates at adult and old stages of life rather than at the earlier stage. Among the trees >400 years, many of them did not show growth decrease with advancing age, indicating that ageing did not reduce growth. We conclude that the maximum age of stand-forming Fennoscandian Norway spruce trees would be in the range of 500–600 years.

To document

Abstract

North European epiphytic lichens are often genetically impoverished compared with their North American counterparts. This has been hypothesized to impede sexual reproduction due to reduced chances of finding compatible mating type partners. We compared genetic variation and reproductive mode in two threatened Scandinavian lichens, Evernia divaricata and Usnea longissima, with more viable populations in North America to see (i) if these species also show genetical depletion in northern Europe and (ii) if the occurrence of sexual propagules (ascospores in apothecia) is more prevalent in genetically diverse populations. Genetic variation of the fungal component was assessed by sequencing two nuclear rDNA gene regions (ITS and IGS) in 1005 and 1477 thalli, collected from 92 and 160 localities of E. divaricata and U. longissima, respectively. Scandinavian populations of both species were almost devoid of genetic variation compared with much higher genetic diversity in North America.We found no support for the proposed relationship between genetic diversity and fertility. Fertile thalli were found in several genetically invariable populations. Fertility increased with population size and regional abundance in E. divaricata, but not in U. longissima. In Scandinavia, E. divaricata was more fertile than previously recorded, whereas all sampled populations of U. longissima were sterile and possibly clonal.

Abstract

The mating system ofCapercaillie has been referred to as “exploded lek” because displaying males are spaced farther apart than on classical leks. However, inter-male distances and spacing behavior rarely have been quantified. In 2009–2011, we examined the spatial relationships of males on two leks in southeastern Norway by GPS satellite telemetry. Largely exclusive display territories (median 2 ha) surrounded the mating site, but the males spent most of the time displaying on smaller, well-defined display sites (median 182 m2) within their territories. When on their display sites, neighboring birds were spaced 64–212 m apart; decreasing to a minimum during the time of mating. Occasionally, males made long exploratory excursions (median 243 m) across the territories of neighbors, sometimes interacting with them at close distance (< 10m). During daytime, males resided solitarily in radially extending ranges within 1 km of the lek center, commuting to the lek either in the evening or morning by walking or flying, leaving in the morning mostly by walking. The distance from the lek center to night roosting trees and daytime resting areas decreased during the mating season. With interacting males and a spatial arrangement in-between that of classical leks and dispersed polygyny, the term “exploded lek” seems appropriate for the mating system of Capercaillie.

To document

Abstract

To better understand the historic range of variability in the fire regime of Fennoscandian boreal forests we cross-dated 736 fire scars of remnant Scots pine (Pinus sylvestris L.) wood samples in a 3.6 km2 section of the Trillemarka-Rollagsfjell Reserve of south-central Norway. Using a kernel range application in GIS we spatially delineated 57 individual forest fires between 1350 and the present. We found a strong anthropogenic signal in the fire regime from 1600 and onwards: (i) infrequent variably sized fires prior to 1600 shifted to frequent fires gradually decreasing in size during the 1600s and 1700s, with only a few small fires after 1800; (ii) time intervals between fires and the hazard of burning showed substantial differences pre- and post-1600; (iii) fire seasonality changed from late- to early-season fires from the 1626 fire and onwards; and (iv) fire severity decreased gradually over time. Written sources corroborated our results, narrating a history where anthropogenic forest fires and slash-and-burn cultivation expanded with the increasing population from the late 1500s. Concurrently, timber resources increased in value, gradually forcing slash-and-burn cultivators to abandon fires on forest land. Our results strengthen and expand previous Fennoscandian findings on the anthropogenic influence of historic fire regimes.

To document

Abstract

This study combines tree-ring and charcoal data to explore possible drivers of the charcoal record and its spatial variation in a boreal Norwegian forest landscape. Peat and mineral soil samples were collected in a multiple site sampling approach and the amount of charcoal in the peat is related to fire history, Holocene climate variation, major shifts in the vegetation composition, and fuel availability. Dendrochronologic dating was used to reveal the fire history over the last 600 years with spatial and temporal accuracy, and AMS radiocarbon dating of 20 peat columns and their charcoal records from four peatlands was used to elucidate the fire history over the Holocene. The average amount of charcoal was about 2.5 times higher in the mineral soil than in the peat (270 versus 100 g/m², respectively), and there were considerable between- and within-site variations. There was no relationship between the age of a given peatland and its content of charcoal, nor between the amount of charcoal in a given peatland and in the neighboring mineral soil. Although most of the charcoal mass in the peatlands was found in parts of the peat columns originating from relatively warm climatic periods and from the period before the local establishment of Norway spruce (Picea abies), charcoal accumulation rates (per 1000 yr) were higher during cold climatic periods and similar before and after spruce establishment. Recent fires showed up to a low degree in the peat columns. On fine spatial scales (1–10 m), fuel quality and distribution together with fire behaviour throughout millennia are likely to be responsible for variations in the charcoal record. On the landscape scale (100–1000 m), the charcoal records were site-specifically idiosyncratic, presumably due to topography, distribution of fire breaks and fuel types, and human land use, coupled with long-term variations inherent in these factors.

Abstract

Environmentalists tell us that we’re loosing species at an increasing rate, and if we are to stop the cascading extinctions by 2020 (which we have agreed upon in international conventions) we need to take immediate action. Making sure we’re not loosing any ’native’ species may seem a daunting task, especially if we look at insects, spiders, fungi, and other tiny creatures that live in dead wood. For thousands of these saproxylic species the wood and timber that we are harvesting make up the bread and butter of their everyday life. The competition is fierce, and it doesn’t get any better when we remove most of the wood that otherwise would have become their future homes. What shall we do?

To document

Abstract

Fire is the most important ecological factor governing boreal forest stand dynamics. In low- to moderate-severity fires, the post-fire growth of the surviving trees varies according to fire frequency, intensity and site factors. Little is known about the growth responses of Scots pine (Pinus sylvestris L.) following fires in boreal forests. We quantified changes in tree growth in the years following 61 historical forest fires (between 1210 and 1866) in tree-ring series collected from fire-scarred Scots pine trees, snags and stumps in Trillemarka nature reserve in south-central Norway. Basal area increment 10 years pre-, 5 years post-, and 11-20 years post-fire were calculated for 439 fire scars in 225 wood samples. We found a slight temporary growth reduction 5 years post-fire followed by a marked growth increase 11-20 years post-fire. Beyond 20 years post-fire, the long-term tree growth declined steadily up to approximately 120 years. Our results indicate that recurring fires maintained high tree growth in remnant Scots pines, most probably due to a reduction in tree density and thus decreased competition.

To document

Abstract

Along the succession gradient of the boreal forest ecosystem, black grouse Tetrao tetrix inhabits the early and capercaillie Tetrao urogallus the latest stages. When converting old forest to clearcuts and plantations, commercial forestry has therefore been assumed to affect capercaillie negatively and to be favourable to black grouse. During a 30-year period (1979–2008) we monitored sympatric populations of the two species in a forest in southeast Norway based on annual spring and autumn censuses and radio-marked birds. During this period, the proportion of old, semi-natural forest was halved and clearcuts and young plantations increased accordingly. The grouse populations did not change as predicted. While the trend in August numbers of adult black grouse declined, males more than females, abundance of adult capercaillie remained unchanged. Number of males at leks showed similar patterns. Equally surprising, breeding success (number of chicks per female in August) of both species increased, thus indicating that the populations were regulated more by variation in adult survivorship than by recruitment of young birds. No correlations were found with changing climatic factors (precipitation and temperatures in winter and spring, snow depth and time of snow melt), except that year-to-year breeding success was positively correlated with minimum temperatures during 2 weeks posthatch. The results are explained by a combination of more flexible habitat selection than previously assumed and a changing predator regime: In the early period, nearly all capercaillie leks were located in old, semi-natural forest, but as plantations grew older (>30 years), new leks were established there. Similarly, while young capercaillie broods used old semi-natural forest almost exclusively when the study started, they frequently used middle-aged plantations, especially those with a ground cover of bilberry Vaccinium myrtillus, when these became common in later years. The increasing breeding success could largely be explained by more females rearing chicks successfully, presumably due to a marked decline in the main nest predator, the red fox Vulpes vulpes. A practice of thinning of the old, semi-natural forest some years prior to final harvesting probably facilitated predation of black grouse by goshawks Accipiter gentilis. Contrary to many beliefs, our results indicate that both capercaillie and black grouse are quite tolerant to changes in forest management regimes. In our study, numerical and functional responses of predators (mainly red fox and goshawk) apparently played a more important role in regulating grouse numbers than habitat factors per se.

To document

Abstract

During the first few weeks of life, chicks of the capercaillie (Tetra urogallus) and black grouse (T. tetrix) subsist mainly on insects, of which lepidopteran and hymenopteran larvae are the main components. We studied the breeding phenology of these two species and examined how the timing of breeding was related to the temporal distribution of their larval food source. During a five-year survey, capercaillie mated and hatched consistently four to six days before black grouse. Depending on the vegetation type, the number of larvae (>= 2 mm in length) increased between five and ten times within 10 days, and hatching coincided roughly with the peaks in larval numbers. Due to body growth, however, larval abundance in terms of volume was reached later and occurred 8-9 and 13-14 days after the mean hatching dates in the two species, respectively. Slightly later development of Hymenoptera as compared with that of Lepidoptera contributed in extending the period of high larval abundances for more than one week. The timing of breeding of the two species appears, therefore, to match the temporal distribution of insect food for the fast-growing chicks as they hatch several days before the peak in larval volumes. In one year, when mating was advanced, presumably due to exceptionally warm weather before mating (yet the temporal abundance of larvae was unchanged), breeding success was higher than in years when mating occurred later.

Abstract

Whereas lichen growth rates have received considerable attention, comparatively few detailed studies of growth patterns have been carried out. Generally, most lichens seem to grow apically, with pseudomeristomatic tissue confined to lobe margins and branch tips. However, some species appear to retain the capacity to expand throughout the thallus. Such intercalary growth processes have proved difficult to confirm in the field for two- and three-dimensionally growing folious and fruticose forms. Using transplants of the conspicuous, one-dimensionally growing Usnea longissima Ach., we document that intercalary growth actually does occur, with thalli expanding geometrically in length with a doubling time of less than a year under favorable conditions.

To document

Abstract

Capercaillie Tetrao urogallus leks have repeatedly been reported to be located in old forest. However, two conditions may have biased this widely held view. First, leks are known to be continuously used over several decades, and therefore might have been established when forest stands were younger. Second, stand -replacement logging (clearcutting) was not widely applied until the 1950s, leaving even-aged regenerating stands too young for leks to have been established in the latter part of the 20th century. Here we report eight cases of lek formation in young plantations from south-central Norway. Stand age ranged within 2646 years when display activity started. At six of the sites, we confirmed that females were regularly feeding on pine trees in winter prior to lek establishment, and at four of these sites displaying males were observed courting the females in late winter. These findings support the hotspot model of lek formation put forward by Gjerde et al. (2000), and it offers promising options for managing capercaillie leks in commercially utilised forests.

To document

Abstract

High mortality among chicks, due to fragmentation and changes in habitat caused by commercial forestry, is considered one of the main reasons for the general decline in capercaillie Tetrao urogallus in boreal forests. Using GPS satellite telemetry, we studied the movement patterns of young capercaillie broods: 1) to test if this new technology could be applied to gain more detailed insight into behaviour and habitat selection at a small spatial scale, and if so, 2) to compare the broods' relative use of planted and older, naturally regenerated forests. Hens of four broods with chicks 2-7 days old were captured and fitted with 90-g backpacks containing GPS units and VHF transmitters. The GPS units were programmed to record positions every 15 minutes, the shortest interval possible. With a storage capacity of 450 positions, movements could be monitored for ca 4.5 days. In our study area (Varaldskogen) with moderate topography, the GPS technology performed quite well. A total of 1,277 positions were obtained (84% of potential maximum), of which 77% were within 20 in of the true position of the brood. The movement patterns of the four broods were quite similar, with a mean speed of 83.2 m +/- 9.9 (SE) per hour during the 4.5-day tracking period. Broods moved almost continuously during the 24-hour cycle, presumably foraging, although their speed was slower at night. The two oldest broods whose initial age was seven days moved faster than the two younger broods whose initial age was two and three days, respectively. Strong autocorrelation among successive positions made us examine habitat selection using a binominal choice method for each brood separately. When broods were inside old 'natural' forest, they remained there instead of moving into plantations. When inside plantations, they did not discriminate between remaining there and moving into nearby old forest, but they tended to move faster in plantations than in old forest. Clearly, the new, cost-effective GPS telemetry offers new and better opportunities for studying small-scale brood movement. Very frequent and accurate positions can be obtained without either disturbing the birds or leaving scent marks that may attract predators.

Abstract

We estimated time from death to fall (standing time) of Norway spruce (Picea abies (L.) Karst.) snags in a submountainous old-growth forest in south-central Norway, applying four calculation methods to 124 dendrochronologically cross-dated still-standing snags and 64 fallen logs. The calculation methods consistently estimated expected standing time of snags at 26–34 years, with a median of 16–21 years and 20% of snags standing for >48–58 years. The survival function from all methods took the approximate form of a negative exponential, with a 3%–4% annual fall rate for snags. In the distribution of time since death, a small peak in dead trees 20–30 years ago (late 1970s) coincides with a historic epidemic of bark beetles. The method using only time since death of still-standing snags appears to be the most feasible for estimating total standing time of snags in old-growth forests with constant tree mortality.

Abstract

We studied four south-facing and three north-facing boreal spruce forest stands (ca. 0.1ha each) in SE Norway with the aim of testing the hypothesis that former logging has long-term effects on boreal forest-floor vegetation. The stand series comprised unlogged natural forests and forests that were selectively or clear cut 6070 years prior to our study. Each stand was described with respect to history of forestry impact and tree-stand structure.Environmental, species number, species abundance and species composition (vegetation gradients obtained as ordination axes) variables obtained for 25 m1m plots in each stand were tested for among-stand differences. Significant among-stand differences were found, partly related to former forest management and partly due to among-stand differences in topography.Differences among stands related to management were found for tree stand density, highest in managed stands, and for Dryopteris expansa agg. and Luzula pilosa abundances, peaking in formerly clear-cut stands. Species number (at plot or stand scales) was weakly related to former management.On southerly as well as northerly aspects, gradients in species composition were found that separated plots according to former management. Differences among stand conditioned on topography resulted in opposite patterns in the two series of stands because among southerly stands the clear cut was the least while among northerly the clear cut was the most strongly sloping. Low-inclination sites tended more strongly to be paludified and to have high Sphagnum cover, and to have low abundance of specific microsites with small mosses and hepatics. Vegetation gradients related to soil moisture and microtopography were found for both aspects.A strong gradient in species composition related to tree influence at within-stand scales was found, with variation in species number. Existence of such a gradient should provide for significant biotic effects (of short or long duration) of the environmental changes that take place during forest re-growth: (1) the immediate creation of small or large tree-layer gaps by tree felling; and (2) the closing of the tree layer during the regeneration phase.Most notably, the phases at which the tree layer reaches minimum and maximum cover, respectively, may act as `bottlenecks\" for survival of forest-floor species. We conclude that forestry impacts understorey vegetation by way of changes in tree-layer structure and, to a lesser extent, substrate availability and the local environment, during forest regrowth. The extent and duration of this impact will depend on a complex set of factors.Our results are consistent with the view that if maintenance of species diversity is aimed at, environmental considerations should be built into forest management practices, preferably by mimicking the natural structural dynamics of the tree layer.

Abstract

To estimate the age of Norway spruce (Picea abies (L.) Karst.) logs by means of decay classes, and to assess how long it takes for downed logs to decompose, we dated logs dendrochronologically by applying 5- and 8-grade decay classification systems. Study sites were chosen in old-growth and previously selectively cut forest stands in boreal south-central Scandinavia; 113 logs were dated to the number of years since death, 120 were dated to the number of years since fall, and 61 logs were dated to both. The number of years from death to fall showed a negative exponential distribution, with a mean of 22 years and a range of 0–91 years. Decay classes of logs (8-grade scale) reflected time since fall (R2 = 0.58) better than time since death (R2 = 0.27) in a linear regression model. This result is due to the lower decomposition rate of standing snags. Therefore, the decomposition time of logs should be divided into two periods: time from death to fall, which varies considerably, and time after fall, which appears to follow a linear relationship with decay class. The model predicted that it takes 100 years after fall for downed logs to decompose completely (reaching decay class 8) in old-growth stands. Logs in selectively cut stands appeared to decompose faster (64 years), which is explained by a sample shortage of old logs resulting from previous cuttings. We conclude that the decomposition time of downed logs may be severely underestimated when data is retrospectively compiled from previously logged forest stands.

To document

Abstract

Historical reconstructions of past forest dynamics and stand structures have been used to establish reference conditions for managing present forest ecosystems. In this study we (1) developed and combined a suite of stand reconstruction techniques to describe past stand characteristics, and (2) applied these stand histories to evaluate the relationship between wood-decay fungi and forest continuity. Ten previous selectively logged stands of Norway spruce (<i>Picea abies</i> (L.) Karst.), in the middle boreal zone of southeastern Norway, were studied. We reconstructed stand structures during the 20th century using tree-ring series, growth patterns, age structures, and decay classification and datings of stumps and logs. All stands were selectively logged between 1890 and 1965, with a mean logging interval of 25 years. Harvested volumes (1900-1965) constituted 25-99% of present standing volumes and present volumes were 2.6-21 (median 4) times higher than the lowest estimated historic volumes. Dead wood was categorized into eight decay classes, where one is recently fallen, and eight is almost completely decayed. Six fungus species, assumed to indicate dead-wood continuity, were found on logs in decay classes 2-4, all of which were estimated to be<30 years old. Logs in decay classes 1-4 constituted 85% of logs &#62;&#61;20 cm. Expectedly, fungus abundance increased linearly with increasing number of available logs, but we failed to find a positive correlation between fungi abundance and number of old logs present (decay classes 5-8), when the effect of younger logs (2-4) was accounted for. This finding, together with the stand histories, does not lend support to the hypothesis that a continuous supply of dead wood, at the scale of forest stands, is crucial for the occurrence of the surveyed wood-decay fungi. We propose forest stand reconstructions to hold promise as a tool to assess the role of structural continuity for the occurrence of late-successional and old-growth species

Abstract

Coastal spruce forests of central Norway harbour a unique assemblage of epiphytic lichens and are given high priority with respect to conservation of biodiversity. To assess the historical impact of logging during the last 100-150 yrs, 31 remnant stands were studied by means of tree-ring analysis of 2199 trees and the decay stage of 1605 stumps. No stands had been clear-cut, but all had been selectively logged at least twice during the last 150 yrs. Total harvested timber volurne ranged from 65 to 409 m3ha-1 (31-124 % of present-day standing volume) and the selective logging kept standing volume low (40-200 m3ha-1) during 1890-1930. Present-day stand characteristics were strongly correlated with site productivity and topographic position within the ravine valleys. Low amounts of dead wood at sites with high historical logging activity was the only consistent relationship found after covariance of site productivity, topographic position and deciduous trees were taken into account. The results indicate that old-growth stand characteristics, such as reversed J-shaped age distributions and dead wood in advanced decay ciasses, can be obtained 100-150 yrs after intensive selective logging.