Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

To document

Abstract

The fungus Parastagonospora nodorum is a narrow host range necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) of cereals, most notably wheat. Although commonly observed on wheat seedlings, P. nodorum infection has the greatest effect on the adult crop. It results in leaf blotch, which limits photosynthesis and thus crop growth and yield. It can also affect the wheat ear, resulting in glume blotch which directly affects grain quality. Reports of P. nodorum fungicide resistance, the increasing use of reduced tillage agronomic practices and high evolutionary potential of the pathogen, combined with changes in climate and agricultural environments, mean that genetic resistance to SNB remains a high priority in many regions of wheat cultivation. In this review, we summarise current information on P. nodorum population structure and its implication for improved SNB management. We then review recent advances in the genetics of host resistance to P. nodorum and the necrotrophic effectors it secretes during infection, integrating the genomic positions of these genetic loci using the recently released wheat reference genome assembly. Finally, we discuss the genetic and genomic tools now available for SNB resistance breeding and consider future opportunities and challenges in crop health management using the wheat-P. nodorum interaction as a model.

To document

Abstract

Effective evidence-based nature conservation and habitat management relies on developing and refining our methodological toolbox for detecting critical ecological changes at an early stage. This requires not only optimizing the use and integration of evidence from available data, but also optimizing methods for dealing with imperfect knowledge and data deficiencies. For policy and management relevance, ecological data are often synthesized into indicators, which are assessed against reference levels and limit values. Here we explore challenges and opportunities in defining ecological condition in relation to a reference condition reflecting intact ecosystems, as well as setting limit values for good ecological condition, linked to critical ecological thresholds in dose–response relationships between pressures and condition variables. These two concepts have been widely studied and implemented in aquatic sciences, but rarely in terrestrial systems. In this paper, we address practical considerations, theoretical challenges and possible solutions using different approaches to determine reference and limit values for good ecological condition in terrestrial ecosystems, based on empirical experiences from a case study in central Norway. We present five approaches for setting indicator reference values for intact ecosystems: absolute biophysical boundaries, reference areas, reference communities, ecosystem dynamics based models, and habitat availability based models. We further present four approaches for identifying indicator limit values for good ecological condition: empirically estimated values, statistical distributions, assumed linear relationships, and expert judgement-based limits. This exercise highlights the versatile and robust nature of ecological condition assessments based on reference and limit values for different management purposes, for situations where knowledge of the underlying relationships is lacking, and for situations limited by data availability. Ecological condition Index Management Reference condition Terrestrial

To document

Abstract

During surveys of insect-associated mycobiomes in Norway, Poland, and Russia, isolates with affinity to Graphilbum (Ophiostomatales, Ascomycota) were recovered. In this study, eight known Graphilbum species as well as the newly collected isolates were compared based on morphology and DNA sequence data for four gene regions. The results revealed seven new species, described here as G. acuminatum, G. carpaticum, G. curvidentis, G. furuicola, G. gorcense, G. interstitiale, and G. sexdentatum. In addition to these species, G. crescericum and G. sparsum were commonly found in Norway. All new species were recovered from conifers in association with bark beetles, cerambycid beetles, and weevils and were morphologically similar, predominantly with pesotum-like asexual morphs. Where sexual morphs were present, these were small ascomata with short necks and rodshaped ascospores having hyaline sheaths. The results suggest that Graphilbum species are common members of the Ophiostomatales in conifer ecosystems.

To document

Abstract

Scenarios describe plausible and internally consistent views of the future. They can be used by scientists, policymakers and entrepreneurs to explore the challenges of global environmental change given an appropriate level of spatial and sectoral detail and systematic development. We followed a nine-step protocol to extend and enrich a set of global scenarios – the Shared Socio-economic Pathways (SSPs) – providing regional and sectoral detail for European agriculture and food systems using a one-to-one nesting participatory approach. The resulting five Eur-Agri-SSPs are titled (1) Agriculture on sustainable paths, (2) Agriculture on established paths, (3) Agriculture on separated paths, (4) Agriculture on unequal paths, and (5) Agriculture on high-tech paths. They describe alternative plausible qualitative evolutions of multiple drivers of particular importance and high uncertainty for European agriculture and food systems. The added value of the protocol-based storyline development process lies in the conceptual and methodological transparency and rigor; the stakeholder driven selection of the storyline elements; and consistency checks within and between the storylines. Compared to the global SSPs, the five Eur-Agri-SSPs provide rich thematic and regional details and are thus a solid basis for integrated assessments of agriculture and food systems and their response to future socio-economic and environmental changes.

To document

Abstract

Silicon is found in all plants and the accumulation of silicon can improve plant tolerance to biotic stress. Strawberry powdery mildew (Podosphaera aphanis) and two-spotted spider mite (Tetranychus urticae) are both detrimental to strawberry production worldwide. Two field trials were done on a UK commercial strawberry farm in 2014 and 2015, to assess the effects of silicon nutrient applied via the fertigation system on P. aphanis and T. urticae. The silicon treatments decreased the severity of both P. aphanis and T. urticae in two consecutive years on different cultivars. The percentage leaf area infected with P. aphanis mycelium from silicon treated plants were 2.19 (in 2014) and 0.41 (in 2015) compared with 3.08 (in 2014) and 0.57 (in 2015) from the untreated plants. The etiology of the pathogen as measured by the Area Under the Disease Progress Curve from silicon (with and without fungicides) treatments was 152.7 compared with 217.5 from non-silicon (with and without fungicides) treatments for the overall period of 2014–2015. The average numbers of T. urticae recorded on strawberry leaves were 1.43 (in 2014) and 1.83 (in 2015) in plants treated with silicon compared with 8.82 (in 2014) and 6.69 (in 2015) in untreated plants. The silicon contents of the leaves from the silicon alone treatment were 26.8 μg mg-1 (in 2014) and 22.2 μg mg-1 (in 2015) compared with 19.7 μg mg-1 (in 2014) and 21.4 μg mg-1 (in 2015) from the untreated. The silicon nutrient root application contributed to improved plant resilience against P. aphanis and T. urticae. Silicon could play an important role in broad spectrum control of pests and diseases in commercial strawberry production.

To document

Abstract

Blueberries are distinguished by their purple-blue fruit color, which develops during ripening and is derived from a characteristic composition of flavonoid-derived anthocyanin pigments. The production of anthocyanins is confined to fruit skin, leaving the colorless fruit flesh devoid of these compounds. By linking accumulation patterns of phenolic metabolites with gene transcription in Northern Highbush (Vaccinium corymbosum) and Rabbiteye (Vaccinium virgatum) blueberry, we investigated factors limiting anthocyanin production in berry flesh. We find that flavonoid production was generally lower in fruit flesh compared with skin and concentrations further declined during maturation. A common set of structural genes was identified across both species, indicating that tissue-specific flavonoid biosynthesis was dependent on co-expression of multiple pathway genes and limited by the phenylpropanoid pathway in combination with CHS, F3H, and ANS as potential pathway bottlenecks. While metabolite concentrations were comparable between the blueberry genotypes when fully ripe, the anthocyanin composition was distinct and depended on the degree of hydroxylation/methoxylation of the anthocyanidin moiety in combination with genotype-specific glycosylation patterns. Co-correlation analysis of phenolic metabolites with pathway structural genes revealed characteristic isoforms of O-methyltransferases and UDP-glucose:flavonoid-3-O-glycosyltransferase that were likely to modulate anthocyanin composition. Finally, we identified candidate transcriptional regulators that were co-expressed with structural genes, including the activators MYBA, MYBPA1, and bHLH2 together with the repressor MYBC2, which suggested an interdependent role in anthocyanin regulation.