Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

Abstract

Forests are a key plank of European policies to mitigate and adapt to climate change and to promote biodiversity. These policies are starting to become more nuanced with respect to the account of their impacts on carbon storage, considering the effect of long-lived wood products and value of conserving old-growth forests, along with indirect land-use change impacts. However, a CO2-focused perspective means that many processes are still omitted for the quantification of the true extent of climate effects. Emissions of the greenhouse gases nitrous oxide and methane, short-lived climate forcers and effects from albedo changes and heat fluxes are also relevant. These processes are interconnected and influence the climate mitigation of forests in a complex way and need to be considered. The CLImate Mitigation and Bioeconomy pathways for sustainable FORESTry (CLIMB-FOREST) Horizon Europe project that runs until 2027 uses a holistic approach to estimate the climate impacts of various management alternatives. The foundation of CLIMB-FOREST is the use of European-wide empirical data, as well as an advanced coupled vegetation and earth-system modelling framework that includes biodiversity indicators and the interaction of forestry stakeholders in a global trade system. This framework is used to model management, forest tree species and climate on short- to long-term in Europe. We present first results of the climate effects and ecosystem functioning for a range of management alternatives in boreal, temperate, and Mediterranean forests. For example, introducing broadleaved trees in a coniferous forest promotes resilience and increased cooling from higher solar light scattering and latent heat flux of broadleaved trees. On the other hand, higher evapotranspiration might lead to an accelerated soil moisture depletion and reduced monoterpene emissions. The latter would have a warming effect because terpenes produce atmospheric particles, which are effective cooling agents through their involvement in cloud formation. Consequently, understanding these complex climate effects is key for appropriate climate-smart-forestry policies and approaches. The main outcomes and impacts of CLIMB-FOREST are to suggest alternative pathways for the forest sector to mitigate climate change in entire Europe, create attitude change in the policymaking process and influence foresters to adopt to new forest management strategies.

Abstract

Hurdal (NO-Hur) is a recently labelled ICOS class 2 station in Southeast Norway. It represents a typical southern boreal forest of medium productivity, dominated by old Norway spruce (average tree height: 25 m, ages: up to 100 years) with some pine and broadleaved trees. The eddy covariance technique is used to measure CO2 fluxes on a 42 m tower since 2021 . The measurements have an average footprint area of approximately 63 ha. In 2023, the region experienced an unusual dry spring and then an extraordinary flood in August. Both events showed significant impact on the Net Ecosystem Exchange (NEE) and heat fluxes. The station is also equipped with automatic dendrometers and sap flow devices on the dominant spruce trees, allowing us to investigate the impact of these events at the individual tree scale. We will present tree growth and transpiration flux at different temporal scales (from sub-daily to seasonal), and relate these single tree observations with environmental variables, ecosystem-level NEE and evapotranspiration using phase synchronization analysis. These observational data will yield insights into carbon and water processes of a boreal forest at different scales in response to multiple disturbances.

To document

Abstract

Lepidopterism, a skin inflammation condition caused by direct or airborne exposure to irritating hairs (setae) from processionary caterpillars, is becoming a significant public health concern. Recent outbreaks of the oak processionary caterpillar (Thaumetopoea processionea) have caused noteworthy health and economic consequences, with a rising frequency expected in the future, exacerbated by global warming promoting the survival of the caterpillar. Current medical treatments focus on symptom relief due to the lack of an effective therapy. While the source is known, understanding the precise causes of symptoms remain incomplete understood. In this study, we employed an advanced method to extract venom from the setae and identify the venom components through high-quality de novo transcriptomics, venom proteomics, and bioinformatic analysis. A total of 171 venom components were identified, including allergens, odorant binding proteins, small peptides, enzymes, enzyme inhibitors, and chitin biosynthesis products, potentially responsible for inflammatory and allergic reactions. This work presents the first comprehensive proteotranscriptomic database of T. processionea, contributing to understanding the complexity of lepidopterism. Furthermore, these findings hold promise for advancing therapeutic approaches to mitigate the global health impact of T. processionea and related caterpillars.

To document

Abstract

Colon cancer is increasing worldwide and is commonly regarded as hormone independent, yet recent reports have implicated sex hormones in its development. Nevertheless, the role of hormones from the hypothalamus–hypophysis axis in colitis-associated colorectal cancer (CAC) remains uncertain. In this study, we observed a significant reduction in the expression of the oxytocin receptor (OXTR) in colon samples from both patient with colitis and patient with CAC. To investigate further, we generated mice with an intestinal-epithelium-cell-specific knockout of OXTR. These mice exhibited markedly increased susceptibility to dextran-sulfate-sodium-induced colitis and dextran sulfate sodium/azoxymethane-induced CAC compared to wild-type mice. Our findings indicate that OXTR depletion impaired the inner mucus of the colon epithelium. Mechanistically, oxytocin was found to regulate Mucin 2 maturation through β1-3-N-acetylglucosaminyltransferase 7 (B3GNT7)-mediated fucosylation. Interestingly, we observed a positive correlation between B3GNT7 expression and OXTR expression in human colitis and CAC colon samples. Moreover, the simultaneous activations of OXTR and fucosylation by l-fucose significantly alleviated tumor burden. Hence, our study unveils oxytocin’s promising potential as an affordable and effective therapeutic intervention for individuals affected by colitis and CAC.