Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

Finding efficient ways to decrease wood decay caused by fungi is an important issue in the timber construction. A possible way to avoid wood decay by fungi is by reducing the water content of wood, since water is a primary condition for fungal growth. Bulking of the wood cell wall by chemical reagents occupies the space where water normally occurs. This also improves the dimensional stability of the modified wood. The aim of the work was to react non-toxic reagents using a Maillard type of reaction in the wood cell wall. Wood was soaked in different aqueous solutions with a primary amine and a sugar as the main constituents. The wood was thereafter cured in an oven at 120°C. The preliminary results showed that the use of the Maillard reaction for wood modification is a promising method and is worth further research.

To document

Abstract

Within the Slovenian region of Istria, the olive growing and oil production industry is strong. This industry has a long history and the olives grown here have high levels of biologically active compounds including a variety of phenolic compounds. Using residual materials generated by this industry in potential wood protection systems would not only valorise low-value materials and stimulate rural economies but would also provide an alternative to currently used oil-based protection systems. The objective of this study was to produce an oil treatment for wood protection and assess its efficacy in reducing leaching, weathering effects, and fungal decay. Two maleinisation techniques were used to chemically modify low-value lampante oil in an attempt to limit leaching when impregnated in wood. Pinus sylvestris (Scots pine) and Fagus sylvatica (European beech) were treated with the modified oils and underwent leaching, accelerated weathering, and decay tests. Leaching of the treatment oils was relatively low compared with other experiments and beech wood specimens treated with a direct maleinisation treatment showed improvement in performance compared to control specimens. In addition, it was found that the modified oils were not completely removed from the wood after solvent extraction indicating that they could potentially be used as an immobilisation agent in combination with other treatments thereby reducing the amount of active component of the protective agent.

To document

Abstract

Effects of climatic factors and material properties on the development of surface mould growth on wooden claddings were investigated in a laboratory experiment. Specimens of aspen (Populus tremula), Siberian larch (Larix Sibirica), American white oak (Querqus alba), Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and thermally modified pine were incubated in eight climatic chambers at specified wetting periods (2 or 4 h per day), relative humidity (58–86%) and temperature conditions (10–27°C). Surface mould growth was assessed weekly for 13 weeks, and the results were evaluated statistically using Generalized Estimating Equations logistic regression models. All tested climatic factors had significant effects on the mould growth, and there were significant differences between the materials. The ranking of the materials varied with temperature and over time. Aspen, pine sapwood and oak were overall most susceptible to mould growth, and thermally modified pine least susceptible. There were significant differences between sapwood and heartwood for pine and spruce. The effect of density was tested on the spruce heartwood material, but was not found to be significant. The results can be used to further develop prediction models for mould growth on wooden claddings.

To document

Abstract

This study addresses changes in visual appearance of unpainted wood materials exposed outdoors. Specimens of Norway spruce (Picea abies) Scots pine (Pinus sylvestris), aspen (Populus tremula), acetylated Radiata pine (Pinus radiata) and DMDHEU-modified Scots pine sapwood were exposed facing south in Ås, Norway for 60 weeks. During this period, surface mould growth development and wasp attack were assessed visually. Development in lightness (L*) and the uniformity of the weather grey colour were assessed by image analysis. The mould rating of the tested wood materials developed in varying speed, but all specimens had reached the maximum rating after 42 weeks. Our results indicate that most specimens continued to darken after the specimens had reached maximum mould rating, and that evaluation of L* can provide additional information about the surface mould growth. Furthermore, our results indicate that most materials developed a less uniform appearance than what was initially, except from DMDHEU which obtained a more uniform appearance as a consequence of the weathering. This study also shows that wasp attack can give a lighter appearance of the wood by chewing off the top weathered layer. Different wood substrates were attacked in varying degree. Aspen was the substrate most severely attacked by wasps while the acetylated wood was not attacked at all during the 60 weeks of exposure.