Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2002
Abstract
The effect of cold acclimation and defence activators on snow mould resistance and expression of pathogenesis-related (PR-) genes were investigated in winter cereals and perennial ryegrass. Cold acclimation, known to induce snow mould resistance, had apotentiating effect on snow mould-induced PR-gene expression in winter wheat. Chitosan treatment induced chitinase expression and in some cases also snow mould resistance in winter wheat. Bion treatment reduced snow mould resistance in perennial ryegrass.
Abstract
Cleaning of containers to counteract infection that might cause root dieback should remove old, adhering media and roots that may harbour pathogens. This study investigated seedling growth and the number of viable fungal propagules retained on the container cavity walls as a result of different container cleaning treatments: washing with cold water (ca 8C) only, or in addition with a bath temperature of 60, 70, 80 or 95C for 30 seconds.More fungal propagules were isolated from containers washed in cold water, than from the other treatments. The most frequently isolated fungi were Paecilomyces sp. and Penicillium sp., which are well known saprophytes. Bacteria and yeast did not seem to be affected by the washing.Electron microscopy studies of container cavity walls revealed many organic particles and fungal spores on the walls of coldwashed containers. Among other fungal spores there were visible chains of Paecilomyces spp. spores.Containers that were washed at 80C had some organic debris attached to the cavity walls, but no spores were visible. In used and unwashed containers fungal spores, hyphae and organic debris were found on the container cavity walls. Containers in which the major part of the seedlings previously had suffered from root dieback might have contained a considerable amount of inoculum before washing.Almost 60% of the seedlings grown in unwashed containers had dead or very stunted root systems, whereas about 10% of the seedlings in cold washed containers suffered from severe root dieback. Additional warm water treatment further reduced the root dieback of this group of containers. In unwashed containers in which healthy seedlings had been grown, about 4% seedlings and after cold washing no seedlings with root dieback were observed.The cold washing procedure had a positive effect on seedling height, but there was no additional effect of the warm water treatment. We conclude that cold pressurised washing alone does not provide adequate control of root dieback and that an additional warm water bath of at least 60C is recommended.
Authors
Guro BrodalAbstract
No abstract has been registered
Academic – Quality seed – a factor for sustainable progress
JG Hampton, NM de Carvalho, M Kruse, ...
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
A quantitative multiplex real-time PCR procedure was developed to monitor the dynamics in Norway spruce (Heterobasidion annosum) pathosystem. The assay reliably detected down to 1 pg of H. annosum DNA and 1 ng of host DNA in multiplex conditions. As a comparative method for quantifying fungal colonization,we applied the ergosterol assay. There was a very high correlation between the results obtained with the two methods, this strengthening the credibility of both assays. The advantages and disadvantages of these assays are discussed.
Abstract
Determining the level of pathogenic fungi and other microorganisms during colonization of the host is central in phytopathological studies. A direct way to monitor fungal hyphae within the host is microscopic examination, but chitin and ergosterol-levels are commonly used to indirectly measure the amount of fungus present. Recently real-time PCR technology is being used to follow infection agents in host tissues. We study the molecular basis of host defense responses, using the coniferous host Norway spruce infected with the pathogen Heterobasidion parviporum as the experimental system. This basidiomycete and the closely related pathogen H. annosum are the major root rot causing pathogens in conifers. To screen host material for differential resistance towards H. parviporum, it is a necessity to quantify the fungal colonization of the host tissues. Therefore, we aimed to develop and compare the sensitivity of a real-time PCR to an ergosterol based method for determining the rate of colonization, and applied the methods to rank the infection level of the pathogen on the spruce clones 053 and 589. We developed a quantitative multiplex real-time PCR procedure that reliably detecting down to 1pg H. parviporum DNA and 1ng host DNA. There was a very high correlation between the fungal-biomass/total-biomass and fungal-DNA/total-DNA rankings obtained with ergosterol and real-time PCR, strengthening the credibility of both methods. Based on both ergosterol and real-time PCR, it was clear that the clone 053 was hosting more fungal biomass than clone 589. The results indicate that this real-time procedure can be a useful method to screen different spruce material for their relative resistance to the pathogen H. parviporum.
Abstract
One of our main interests is to learn about the molecular basis of host defense responses, using the coniferous host Norway spruce infected with the pathogen Heterobasidion parviporum as the experimental system. This basidiomycete and the closely related pathogen H. annosum are the major root rot causing pathogens in conifers.To screen host material for differential resistance towards H. parviporum, it is a necessity to quantify the fungal colonization of the host tissues. Therefore, we aimed to develop and compare the sensitivity of a real-time PCR to an ergosterol based method for determining the rate of colonization. We developed a quantitative multiplex real-time PCR procedure that reliably detecting down to 1pg H. parviporum DNA and 1ng host DNA.There was a very high correlation between the fungal-biomass/total-biomass and fungal-DNA/total-DNA rankings obtained with ergosterol and real-time PCR, strengthening the credibility of both methods. The results indicate that this real-time procedure can be a useful method to screen different spruce material for their relative resistance to the pathogen H. parviporum.
Authors
Dan AamlidAbstract
Extended summary and conclusions The Pechenganikel combine in the Nikel-Zapolyarny area was established in 1933. During the first 30 years of production, 100 000 tons of sulphur dioxide (SO2) were emitted annually. Since 1971, nickel from the Norilsk ores in Siberia have been processed in the smelters. The Norilsk ore contains more sulphur than the Nikel ore. As a result of the processing of this sulphur-rich ore, emissions of SO2 increased rapidly, reaching 400 000 tons in 1979. Current annual emissions are much lower, about 150 000 tons. However, the present emission is still above the critical level for sensitive biota in the Nikel-Pasvik area. Investigations of soils show that the soil layers are contaminated by heavy metals (nickel and copper). The results also indicate an influence on soil fertility expressed as changes in base saturation (BS), cation exchange capacity (CEC) and soil acidity. According to the calculations (critical loads) future sulphur deposition has to be reduced to very low levels in order to stop the ongoing soil acidification. Air pollution influence has had severe effects on forest vegetation in the Nikel-Pasvik area. Trees, vascular plants, mosses and lichens are all affected. In the close vicinity of the smelters forests are dead or severely damaged. Visible injuries to vegetation caused by SO2 have some years been frequent. Symptoms are recognised on Scots pine (Pinus sylvestris) and downy birch (Betula pubescens), which are the dominant tree species in the region, and on other plants, e.g. dwarf birch (Betula nana) and bilberry (Vaccinium myrtillus). The species composition of the ground vegetation in the forest has been influenced, and epiphytic lichen vegetation has been severely influenced over large areas. Critical levels are exceeded on more than 3200 square kilometres of Russian and Norwegian territory. Air pollution has reduced invertebrate and animal diversity due to lack of forest vegetation and contamination of surface soils in the vicinity of the nickel smelters. Small vertebrates are impacted by an increased heavy metal content in the liver. However, no negative health effects to reindeer are foreseen. Long-term monitoring of water chemistry in lakes and rivers has revealed that extensive surface water acidification has taken place, particularly on the Norwegian side of the border. Critical loads are exceeded in large areas of Sør-Varanger municipality, especially in the Jarfjord area, and in areas situated around Nikel and Zapolyarny. However, on the Russian side, the contamination of lakes by the heavy metals (nickel and copper) is more severe than acidification, especially in the vicinity of the smelters, where damage to fish populations as well as phytoplankton and invertebrate communities are observed. Studies of human health in the Nikel-Pasvik area revealed no major health effects that can be ascribed to the air pollution by nickel and sulphur dioxide in the Nikel-Zapolyarny area or in the Pasvik valley. The most severe effects of air pollution in the border areas between Norway and Russia, caused by sulphur dioxide emission from Nikel and Zapolyarny, on the terrestrial and aquatic ecosystems seem to be on vegetation, surface water and soils, and thus also on other compartments of the ecosystem.
Abstract
No abstract has been registered