Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2023
Abstract
No abstract has been registered
Abstract
Norwegian apple production is a highly variable affair, and even more so facing the changing climate. Knowledge about which role the pollinator communities play in these systems may bring us closer to understanding why the between year variation is so large, and how to mitigate it. In this particular study we will use state of the art genetic methods (Genotyping-by-sequencing) to investigate how the genes are transported within the orchards, and how this is affected by variations in bee species diversity. In turn, we will look into how the fruit quality and seed set is affected by the observed gene flow.
Abstract
No abstract has been registered
Authors
N. Leclercq L. Marshall T. Weekers P. Basu D. Benda D. Bevk R. Bhattacharya P. Bogusch A. Bontšutšnaja L. Bortolotti N. Cabirol E. Calderón-Uraga R. Carvalho S. Castro S. Chatterjee La De La Cruz Alquicira Miranda de Miranda T. Dirilgen A. Dorchin K. Dorji B. Drepper S. Flaminio J. Gailis M. Galloni H. Gaspar M.W. Gikungu Bjørn Arild Hatteland I. Hinojosa-Diaz L. Hostinská B.G. Howlett K.-L.J. Hung L. Hutchinson R.O. Jesus N. Karklina M.S. Khan J. Loureiro X. Men J.-M. Molenberg S. Mudri-Stojnić P. Nikolic E. Normandin J. Osterman F. Ouyang Åsne Skjøtskift Øygarden L. Ozolina-Pole N. Ozols A. Parra Saldivar R.J. Paxton T. Pitts-Singer K. Poveda K. Prendergast M. Quaranta S.F.J. Read Stefanie Reinhardt M. Rojas-Oropeza C. Ruiz M. Rundlöf A. Sade C. Sandberg F. Sgolastra S.F. Shah M.A. Shebl V. Soon D.A. Stanley J. Straka P. Theodorou E. Tobajas J.L. Vaca-Uribe A. Vera C.A. Villagra M.-K. Williams M. Wolowski T.J. Wood Z. Yan Q. Zhang N.J. VereeckenAbstract
An essential prerequisite to safeguard pollinator species is characterisation of the multifaceted diversity of crop pollinators and identification of the drivers of pollinator community changes across biogeographical gradients. The extent to which intensive agriculture is associated with the homogenisation of biological communities at large spatial scales remains poorly understood. In this study, we investigated diversity drivers for 644 bee species/morphospecies in 177 commercial apple orchards across 33 countries and four global biogeographical biomes. Our findings reveal significant taxonomic dissimilarity among biogeographical zones. Interestingly, despite this dissimilarity, species from different zones share similar higher-level phylogenetic groups and similar ecological and behavioural traits (i.e. functional traits), likely due to habitat filtering caused by perennial monoculture systems managed intensively for crop production. Honey bee species dominated orchard communities, while other managed/manageable and wild species were collected in lower numbers. Moreover, the presence of herbaceous, uncultivated open areas and organic management practices were associated with increased wild bee diversity. Overall, our study sheds light on the importance of large-scale analyses contributing to the emerging fields of functional and phylogenetic diversity, which can be related to ecosystem function to promote biodiversity as a key asset in agroecosystems in the face of global change pressures.
Authors
Helene Müller Haugan Joseph Chipperfield Bjørn Arild Hatteland Alexander Dumbrell Rakel BlaalidAbstract
No abstract has been registered
Authors
Haruna Sekabira Ghislain Tchoromi Tepa-Yotto Arnaud R. M. Ahouandjinou Karl Thunes Barry Pittendrigh Yusuf Kaweesa Manuele TamòAbstract
The COVID-19 pandemic, surprised many through its impact on the food systems, resulting in collapses in the food production value chains and in the integrated pest disease management sector with fatal outcomes in many places. However, the impact of COVID-19 and the digital experience perspective on Integrating Pest Management (IPM) is still yet to be understood. In Africa, the impact was devastating, mostly for the vulnerable smallholder farm households, who were rendered unable to access markets to purchase inputs and sell their produce during the lockdown period. By using a holistic approach the paper reviews different Information and Communications Technologies (ICTs), digitalization, and how this enhanced the capacity of smallholder farmers resilient, and inform their smart-IPM practices in order to improve food systems' amidst climate change during and in the post-COVID-19 period. Different digital modalities were adopted to ensure continuous food production, access to inputs and finances, and selling surplus production among others. This was largely possible by using ICTs to deliver these needed services digitally. The study shares contributions and capacity perspectives of ICTs for empowering smallholder farmers to boost the resilience of their food systems based on COVID-19 successful experiences. Thus digital solutions must be embraced in the delivery of extension service on pest management and good agronomic practices, money transfers for purchasing inputs, receiving payment for sold farm produce, and markets information exchange. These are key avenues through which digital solutions strategically supported smallholder-based food systems through the pandemic.
Authors
Dario Isidro Ojeda Alayon Max John Robert L. Hammond Riitta Savolainen Kari Vepsäläinen Torstein KvammeAbstract
The Formicoxenus genus-group comprises six genera within the tribe Crematogastrini. The group is well known for repeated evolution of social parasitism among closely related taxa and cold-adapted species with large distribution ranges in the Nearctic and Palearctic regions. Previous analyses based on nuclear markers (ultraconserved elements, UCEs) and mitochondrial genes suggest close relationship between Formicoxenus Mayr, 1855, Leptothorax Mayr, 1855 and Harpagoxenus Forel, 1893. However, scant sampling has limited phylogenetic assessment of these genera. Also, previous phylogeographic analyses of L. acervorum (Fabricius, 1793) have been limited to its West-Palearctic range of distribution, which has provided a narrow view on recolonization, population structure and existing refugia of the species. Here, we inferred the phylogenenetic history of genera within the Formicoxenus genus-group and reconstructed the phylogeography of L. acervorum with more extensive sampling. We employed three datasets, one data set consisting of whole mitochondrial genomes, and two data sets of sequences of the COI-5P (658 bp) with different number of specimens. The topologies of previous nuclear and our inferences based on mitochondrial genomes were overall congruent. Further, Formicoxenus may not be monophyletic. We found several monophyletic lineages that do not correspond to the current species described within Leptothorax, especially in the Nearctic region. We identified a monophyletic L. acervorum lineage that comprises both Nearctic and Palearctic locations. The most recent expansion within L. acervorum probably occurred within the last 0.5 Ma with isolated populations predating the Last Glacial Maximum (LGM), which are localized in at least two refugial areas (Pyrenean and Northern plateau) in the Iberian Peninsula. The patterns recovered suggest a shared glacial refugium in the Iberian Peninsula with cold-adapted trees that currently share high-altitude environments in this region.
Abstract
Elymus repens is a problematic perennial weed in annual crops, grasslands and leys. Rhizome fragmentation by vertical disking can potentially reduce E. repens abundance with minimal tillage, but data are lacking on its efficiency in forage production. In a two-year study (2017–2018, 2018–2019) conducted in two forage grass-clover leys that were mostly weed-free except for large E. repens populations, this study examined effects on forage yield, botanical composition, and E. repens rhizome biomass of rhizome fragmentation at significant growth initiation in spring (early rhizome fragmentation, ERF) and/or when conditions allowed after the first forage cut (late rhizome fragmentation, LRF). Cold, wet springs and hard, dry soil in summer delayed treatment in both treatment years, to late spring (ERF) and late summer/early autumn (LRF). In the treatment year, ERF reduced first-cut forage yield by 44% compared with no rhizome fragmentation, while LRF decreased second- and third-cut yield by 24% and 53%, respectively. In the year after treatment, ERF increased total forage yield by on average 10%, while LRF had no effect. Over both years, combined forage yield was reduced by 11% by ERF and 4% by LRF. Both treatments reduced E. repens rhizome biomass, but inconsistently (ERF by 25% in one year only, LRF by 24% at one of two sites). ERF reduced E. repens incidence in forage by 10% in the treatment year, but had no effect in the following year. Thus, rhizome fragmentation by vertical disking can reduce E. repens abundance in grass-clover leys, but the effect is inconsistent and forage yield can be impaired, especially in swards with much E. repens. Moreover, disking is hampered by hard, dry soil conditions.
Authors
Therese With BergeAbstract
No abstract has been registered
Authors
Therese With BergeAbstract
No abstract has been registered