Morten Rasmussen

Senior Scientific Advicer, Norwegian Genetic Resource Center

(+47) 477 13 384
morten.rasmussen@nibio.no

Place
Ås R9

Visiting address
Raveien 9, 1430 Ås

To document

Abstract

Crop wild relatives (CWR) can provide one solution to future challenges on food security, sustainable agriculture and adaptation to climate change. Diversity found in CWR can be essential for adapting crops to these new demands. Since the need to improve in situ conservation of CWR has been recognized by the Convention on Biological Diversity (CBD) (2010) and the Global Strategy for Plant Conservation (2011–2020), it is important to develop ways to safeguard these important genetic resources. The Nordic flora includes many species related to food, forage and other crop groups, but little has been done to systematically secure these important wild resources. A Nordic regional approach to CWR conservation planning provided opportunities to network, find synergies, share knowledge, plan the conservation and give policy inputs on a regional level. A comprehensive CWR checklist for the Nordic region was generated and then prioritized by socio-economic value and utilization potential. Nordic CWR checklist was formed of 2553 taxa related to crop plants. Out of these, 114 taxa including 83 species were prioritized representing vegetable, cereal, fruit, berry, nut and forage crop groups. The in situ conservation planning of the priority CWR included ecogeographic and complementarity analyses to identify a potential network of genetic reserve sites in the region. Altogether 971,633 occurrence records of the priority species were analysed. A minimum number of sites within and outside existing conservation areas were identified that had the potential to support a maximum number of target species of maximum intraspecific diversity.

To document

Abstract

Shallot (Allium cepa var. aggregatum) is an important vegetable crop belonging to the genus Allium. The present study attempted to develop an efficient droplet-vitrification cryopreservation method for shallot ‘10603’ shoot tips. In vitro stock shoots were maintained on Murashige and Skoog (1962) medium (MS) supplemented with 30 g L-1 sucrose, 0.5 mg L-1 BAP, 0.1 mg L-1 NAA and 8 g L-1 agar (pH=5.8). Shoot tips (2.0-3.0 mm in length) were excised from 4-week-old stock shoots and stepwise precultured with increased sucrose concentrations from 0.3 to 0.5 M, each concentration for 1 day. The precultured shoot tips were then loaded for 20 min with a solution composed of 2 M glycerol and 0.5 M sucrose, before exposure to PVS3 for 3 h at room temperature. Dehydrated shoot tips were transferred onto aluminum foils (2×0.8 cm), prior to direct immersion into liquid nitrogen (LN) for cryostorage. For thawing, frozen aluminum foils were moved from LN and immediately transferred into unloading solution composed of liquid MS containing 1.2 M sucrose. After incubation at room temperature for 20 min, shoot tips were post-cultured on solidified MS medium containing 0.3 M sucrose for 2 days and then transferred onto a recovery medium for shoot regrowth. With this procedure, 94% shoot tips survived, and 58% shoot tips regenerated into shoots following cryopreservation.

To document

Abstract

The report summarizes results from a cooperation among all the Nordic countries during the period 2015 – 2019 (two projects). The work has focused on the conservation of Crop Wild Relatives (CWR), i.e. wild plant species closely related to crops. They are of special importance to humanity since traits of potential value for food security and climate change adaptation can be transferred from CWR into crops. The projects represent the first joint action on the Nordic level regarding in situ conservation of CWR. Substantial progress has been made regarding CWR conservation planning, including development of a Nordic CWR checklist and identification of suitable sites for CWR conservation. A set of recommended future actions was developed, with the most important one being initiation of active in situ conservation of CWR in all Nordic countries.

To document

Abstract

The Nordic project “Ecosystem services: Genetic resources and crop wild relatives” was initiated with the long-term aim to assure conservation and sustainable use of the wild genetic resources associated with future food security. There is an increasing threat to crop wild relatives (CWRs) in nature and actions are therefore needed to safeguard these important resources. The Nordic project has resulted in two stakeholder workshops (Stockholm 2015, Vilnius 2016), a common homepage dedicated to Nordic CWR (www.nordgen.org/cwr), policy recommendations on CWR conservation and use and the first common Nordic conservation approach for CWRs. During the project, a common CWR checklist was created and prioritized. The most important crop wild relatives of the region, related to food and forage crops, were selected with use and value criteria. The in situ conservation planning identified potential complementary conservation sites for the priority species. These sites would conserve a maximum number of target taxa and their intraspecific variation by using ecogeographic land characteristic map categories of the region as a proxy for the adaptive scenarios of the priority taxa populations. The potential conservation sites are found in all the five countries (Denmark, Iceland, Finland, Norway and Sweden) across the Nordic region. Since the Nordic countries share many species and habitats across the region, the goal is that joint conservation planning on the Nordic level should make national conservation activities more efficient. The project is funded by Nordic Council of Ministers.

To document

Abstract

Climate change is likely to be one of the most important factors affecting our future food security. To mitigate negative impacts, we will require our crops to be more genetically diverse. Such diversity is available in crop wild relatives (CWRs), the wild taxa relatively closely related to crops and from which diverse traits can be transferred to the crop. Conservation of such genetic resources resides within the nation where they are found; therefore, national-level conservation recommendations are fundamental to global food security. We investigate the potential impact of climate change on CWR richness in Norway. The consequences of a 1.5 and 3.0 °C temperature rise were studied for the years 2030, 2050, 2070, 2080 and then compared to the present climate. The results indicate a pattern of shifting CWR richness from the south to the north, with increases in taxa turnover and in the numbers of threatened taxa. Recommendations for in situ and ex situ conservation actions over the short and long term for the priority CWRs in Norway are presented. The methods and recommendations developed here can be applied within other nations and at regional and global levels to improve the effectiveness of conservation actions and help ensure global food security.

To document

Abstract

Apple genetic resources in Norway are currently conserved within a number of local clonal archives. However, during establishment of these ex situ collections, primary focus was not on capturing as much of the diversity as possible, but instead on preserving cultivars of particular importance to specific fruit-growing areas. To identify redun- dancies within the collection as well as to assess the genetic diversity and structure of apple germplasm currently being conserved in Norway, eight microsatellites were used in genetic characterization of 181 apple accessions. Overall, 14 cases of synonym or possibly mislabeled accessions were identified, as well as several homonyms and duplicates within and among the analyzed collections. The information obtained should contribute to overall better management of the preserved germplasm. Bayesian analysis of genetic structure revealed two major clusters, one containing most of the foreign cultivars, while the other consisted mainly of traditional Scandinavian cultivars, but also some very winter-hardy genotypes such as ‘Charlamovsky’, ‘Gravenstein’, ‘Transparente Blanche’, and ‘Wealthy’. Analyses of molecular variance (AMOVA) detected a signifi- cant genetic differentiation among the clusters ( fCT = 0.077; P < 0.01). The results of the Bayesian analyses do not indicate a strong differentiation between the foreign and the Norwegian apple accessions, however, they do suggest that climate adaptation has had a significant influence on the genetic structure of the preserved germplasm. Overall, apple accessions currently maintained ex situ in Norway represent a diverse germplasm which could be very valuable in future breeding programs, especially for the Scandinavian climate.