Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2011

Abstract

Monitoring changes in soil organic carbon (SOC) is not only linked to atmospheric CO2 dynamics, but also to the sustainability of agricultural systems, maintaining food security, reducing water pollution and soil erosion. In accordance with the methodology of the Intergovernmental Panel for Climate Change (IPCC), we developed a Tier 2 method for estimating CO2 emissions from cropland on mineral soils in Norway and compared the results with those of a Tier 1 method. As in most countries, long-term C stock or emission data sets useful for generating factors are scarce in Norway. We used a soil C balance model (ICBM) to calculate country-specific C stock change factors for relevant management systems. Agricultural activity data for 31 agrozones, from 58 ºN to 71ºN, was applied to estimate annual net CO2 emissions from 1999 to 2009. Calculated annual net emissions were larger when estimated by the Tier 2 method than Tier 1 because i) Tier 2-generated stock change factors for crop rotations with animal manure application were larger than the Tier 1 default values and ii) major changes in agricultural management during the inventory period led to a reduction in manure availability. We conclude that model-based Tier 2 methods are promising when empirical data are limited, but activity data, especially regarding animal manure practices (application rates and crop rotation preferences) are crucial for emission estimates by the IPCC methods.

Abstract

There is a great demand for involving rapid, non destructive and less time consuming methods for quick control and prediction of soil quality, environmental monitoring, and other precision measurements in agriculture. Near infrared reflectance spectroscopy (NIRS) is considered as an appropriate alternative method to conventional analytical methods for large scale measurements. The objective of this study was to investigate the possibilities of NIRS for prediction of some chemical properties of soil samples. A total of 97 samples from Stara Zagora, Kazanlak and Gurkovo region taken from the 0-40 cm layer were collected. Soil types were Luvisols, Vertisols, Fluvisols and Rankers. The samples were analyzed for total phosphorus by spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution, total nitrogen by Kjeldahl method, pH (H O)-potentiometrically and electrical conductivity (EC). 2 The spectral data of all air dried samples were measured using an Perkin Elmer Spectrum One NTS, FT-NIR Spectrometer, within the range from 700 to 2500 nm. Partial Least Squares (PLS) regression was used to built models to determine soil chemical parameters from the NIR spectra. Two-third of the samples were used as a calibration set and the remaining samples as independent validation test set. The best model was obtained for total nitrogen with a coefficient of determination r=0,91, standard error of calibration SEP=336 mg/kg, and the ratio of the standard variation of the reference data to the SEP, indicating the performance of the calibration, of RPD=2,3. The accuracy of prediction was poor for electrical conductivity. The results obtained clearly indicated that NIRS had the potential to predict some soil components rapidly and without sample preparation.

To document

Abstract

‘Summerred" apples (Malus domestica) Borkh are highly susceptible to biennial bearing if not properly thinned. This results in erratic yields and also affects fruit quality adversely. Between 2003 and 2005 ‘Summered"/‘M9" trees were treated with ethephon at concentrations of 250, 375 and 500 mL·L-1 when most king flowers opened (ca. 20% bloom) or at concentrations of 500, 625 and 750 mL·L-1 when the average fruitlet size was 10 mm in diameter. The experimental design was a completely randomised block design with 6 whole tree plots per replication. Trees were sprayed to the point of run-off with a hand applicator only when temperatures exceeded 15ºC. Within two weeks after the second application fruit set was reduced linearly with increasing concentrations of ethephon to less than 1 fruitlet per cluster at the highest concentrations used. Most thinning treatments reduced fruit set significantly compared to unthinned trees. Fruit numbers per tree decreased significantly with increasing ethephon concentrations, and the highest concentrations of ethephon applied during bloom or when the average fruitlet size was 10 mm in diameter resulted in over-thinning. Yield results confirmed the fruit set response where yield reductions were significant at highest concentrations of ethephon (2.1 kg·tree-1) compared to hand-thinned trees (7.3 kg·tree-1) in 2005. All thinning treatments resulted in higher percentage of fruits larger than 60 mm diameter average fruit size compared to unthinned control fruit. Thinning resulted in significantly higher soluble solid contents, and this was especially so for hand-thinned trees. Other fruit quality parameters like yellow/green background color did not show a clear response to thinning. Fruit firmness, however, decreased slightly in all ethephon treated trees whereas return bloom was improved on all thinned trees. It is recommended that ethephon be applied at a rate of 375 mL·L-1 when king flowers open or at a rate of 625 mL·L-1 when the average fruitlet size is 10 mm in diameter. These treatments thin ‘Summerred" apples to a target of about 5 fruits·cm-2 per trunk cross sectional area or 50-70 fruits·100 flower clusters-1 without impacting fruit quality, yield or return bloom the following year.