Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

To document

Abstract

In order to investigate the genetic structure and differentiation among north and south European apple germplasm, 141 apple accessions maintained in ex situ collections in Norway and 110 traditional and international apple accessions from Bosnia and Herzegovina (B&H) were analyzed using 8 microsatellite markers. Bayesian analyses, based on the microsatellite data, grouped most of the accessions into two major clusters. The first cluster consisted mainly of traditional and international B&H accessions, as well as Norwegian accessions derived mostly from foreign or formal breeding programs (‘James Grieve’, ‘Katja’, ‘Summerred’, ‘Bramleys Seedling’, ‘Elstar’, ‘Katinka’, ‘Belle de Boskoop’, ‘Jacques Lebel’, etc.). The second cluster consisted almost exclusively of traditional Norwegian accessions. Further analyses divided each cluster into two sub-clusters. Cluster 1.1 included Norwegian accessions derived from foreign or commercial breeding programs, international cultivars and B&H accessions introduced from Europe and North America during the rule of Austria-Hungarian Empire. Cluster 1.2 included traditional B&H accessions introduced during the reign of Ottoman Empire. Cluster 2.1 and 2.2 consisted mainly of traditional apple accession from Norway. The results obtained indicate a clear genetic structure and differentiation among north and south European apple germplasm, presumably due to climate adaptation and selection.

To document

Abstract

Phenological observations are considered to be sensitive tools for identifying plant responses to climatic changes. Over the last 10 years, the onset of the phenophases of sweet cherry (Prunus avium L.) during spring tended to be earlier than the previous two decades in Ullensvang, western Norway. The effects of air temperature during the winter and spring months were evaluated during two quinquennia (5-year periods), 1996-2000 (Q1) and 2003-2007 (Q2) selected due to similar mean winter and early summer temperatures, but markedly different spring temperatures. Average January-February temperatures were similar (3.3°C) in both of these two 5-year periods. However, average March and April temperatures were slightly warmer (4.0 vs. 3.2°C) and (7.3 vs. 6.9°C), respectively, in Q2 vs. Q1. These increases resulted in significantly earlier flower development. Average temperatures during the first half of May were similar for both quinquennia (10.2 vs. 10.1°C). The start of flowering (first bloom) of early maturing ‘Burlat’ and mid-season ‘Van’ were significantly different. Timing of flowering phenophases were statistically different between Q1 and Q2 for both cultivars. Mean data for ‘Burlat’ and ‘Van’ first bloom were 8 days earlier during Q2, May 2 for ‘Burlat’ and May 1 for ‘Van’. Full bloom occurred 3 days after first bloom and flowering ended 14 days after first bloom. First bloom during Q2 required 221 Baskerville-Emin Growing degree days (GDD) using a base temperature of 2°C. For the same time period in Q1, only 197 GDD were accumulated, which supports the observed temperature differences. Furthermore, we propose a flowering model for full bloom of both ‘Burlat’ and ‘Van’ in Ullensvang, which requires 254 Baskerville-Emin GDD using a base of 2°C starting on March 1.

To document

Abstract

Perennial fruit crops phenology such as cherry is an ideal bio-indicator of climate change due to their long-lasting features, in particular, dates of flower opening and full bloom. This implies i) the use of several generations of cherry trees/orchards and ii) the use of the same original cherry cultivars, which existed as bearing trees and were replanted after the orchard had been grubbed. A comparison of available definitions of phenological stages in cherry previously used independently throughout Europe showed overlaps and shortcomings; hence, harmonisation was reached in this respect in the COST Cherry FA 1104 working group 2 (cherry phenology and climate change) based largely on the acceptance of the BBCH scale. This contribution presents the agreed phenology stages in both visual and wording evidence. Similarly, this contribution presents the agreed cultivars to be monitored in future for phenology and climate change effects for harmonisation. For sweet cherry, this EU-wide harmonisation includes ‘Burlat’, ‘Cristobalina’ and ‘Rita’ as early, ‘Stella’ and ‘Van’ as medium flowering and ‘Sweetheart’, ‘Regina’ and ‘Bigarreau Noire de Meched/Germersdorfer’ for late flowering cultivars for climate change effects. For sour cherry, this harmonisation resulted in ‘Meteor korai’ and ‘Anglaise Hative’ for early flowering, ‘Chrisana Pandy’ and ‘Erdibotermo’ for medium flowering and ‘Schattemorelle’, ‘Iiva, Ujfehrtoifurtos (Balaton)’ for late flowering.

To document

Abstract

The impact of Delphinella shoot blight (Delphinella abietis) and Grovesiella canker (Grovesiella abieticola) on subalpine (Abies lasiocarpa) and corkbark fir (A. lasiocarpa var. arizonica) in a provenance trial in Idaho (ID) was evaluated in 2013. Both pathogens were previously reported from North America on fir species. D. abietis had been found on subalpine fir in USA, but not in ID, and G. abieticola on grand fir (Abies grandis) in ID, but not on subalpine or corkbark fir. D. abietis kills current-year needles and in severe cases buds and shoots, and G. abieticola results in dead shoots and branches and can eventually kill whole trees. Significant differences between provenances in susceptibility to D. abietis and G. abieticola were observed in the provenance trial in ID. In general, subalpine fir was more susceptible to both diseases than corkbark fir. In 2013, D. abietis was also found on subalpine fir in the Puget Sound area of Washington State and G. abieticola was seen on white fir (Abies concolor), but neither disease was detected in native stands of subalpine fir in Washington State. Morphological features of both fungi were described from samples collected in the provenance trial in ID in May 2016.