Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Authors
Hallvard Jensen Paul Eric Aspholm Bjørn Frantzen Tor-Arne Bjørn Eva Narten Høberg Thomas Holm CarlsenAbstract
No abstract has been registered
Authors
Merethe Kleiven Lisa Magdalena Rossbach Julian Alberto Gallego-Urrea Dag Anders Brede Deborah H Oughton Claire CoutrisAbstract
Using Caenorhabditis elegans as a model organism, this study addresses the potential linkage between toxicity of NM300K Ag nanoparticles (AgNPs), their particle size distribution and the presence of dissolved Ag in the test media. Of the three endpoints assessed (growth, fertility and reproduction), reproduction was the most sensitive, with 50% effect concentration (EC50) ranging from 0.26-0.84 mg Ag L-1 and 0.08-0.11 mg Ag L-1 for NM300K and AgNO3, respectively. Silver uptake by C. elegans was similar for both forms of Ag, while bioaccumulation was higher in AgNO3 exposure. The observed differences in toxicity between NM300K and AgNO3 did not correlate to bioaccumulated Ag, which suggests the toxicity to be a function of the type of exposing agent (AgNPs vs AgNO3) and their mode of action. Before addition of the food source, E. coli, size fractionation revealed that dissolved Ag comprised 13-90 % and 4-8 % of total Ag in the AgNO3 and NM300K treatments, respectively. No dissolved Ag was detectable in the actual test media, due to immediate Ag adsorption to bacteria. Results from the current study highlight that information on behavior and characterization of exposure conditions is essential for nanotoxicity studies.
Authors
Manuel J. Steinbauer John-Arvid Grytnes Gerald Jurasinski Aino Kulonen Jonathan Lenoir Harald Pauli Christian Rixen Manuela Winkler Manfred Bardy-Durchhalter Elena Barni Anne D. Bjorkman Frank T. Breiner Sarah Burg Patryk Czortek Melissa A. Dawes Anna Delimat Stefan Dullinger Brigitta Erschbamer Vivian Astrup Felde Olatz Fernández-Arberas Kjetil Farsund Fossheim Daniel Gómez-García Damien Georges Erlend T. Grindrud Sylvia Haider Siri Vatsø Haugum Hanne Henriksen Maria J. Herreros Bogdan Jaroszewicz Francesca Orinda Holl Jaroszynska Robert Kanka Jutta Kapfer Kari Klanderud Ingolf Kühn Andrea Lamprecht Magali Matteodo Umberto Morra di Cella Signe Normand Arvid Odland Siri Lie Olsen Sara Palacio Martina Petey Veronika Piscová Blazena Sedlakova Klaus Steinbauer Veronika Stöckli Jens-Christian Svenning Guido Teppa Jean-Paul Theurillat Pascal Vittoz Sarah J. Woodin Niklaus E. Zimmermann Sonja WipfAbstract
Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century1–7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying8,9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.
Abstract
Four lab scale biogas reactors fed with a substrate composition of ensiled fish waste and manure fixed at 13 and 87 vol %, respectively, were operated with HRTs of 20, 25, 30 and 40 days. Biogas process performance and stability were evaluated with regard to CH4 yields, NH4+ accumulation and abundance of NH4+-tolerant microorganisms. Process performance in the reactors operated at different HRTs were compared to process performance in reactors operated with constant HRT, fed with increased ratios of fish waste. The process performance and microbial dynamics were stable in reactors operated at constant amount of fish waste in the feed and with different HRTs. In the reactors added elevated ratios of fish waste, the concentration of NH4+ and abundance of NH4+-tolerant acetate oxidizing bacteria increased. The biogas process failed in these reactors simultaneously with an observed shift in microbial composition. In particular, the bacterium Tepidanaerobacter Acetatoxydans seemed to affect the biogas process stability. The hydrogenotrophic Methanomicrobiales increased in abundance in response to higher fish waste loading and NH4+ concentrations. This study showed that at a loading of 13% fish waste, it is possible to decrease the HRT from 30 to 20 days without markedly inhibiting the process stability.
Abstract
No abstract has been registered
Authors
James Johnson Elisabeth Graf Pannatier Stefano Carnicelli Guia Cecchini Nicholas Clarke Nathalie Cools Karin Hansen Henning Meesenburg Tiina M. Nieminen Gunilla Pihl-Karlsson Hugues Titeux Elena Vanguelova Arne Verstraeten Lars Vesterdal Peter Waldner Mathieu JonardAbstract
Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosys- tems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Al tot ) and dissolved organic carbon were determined for the period 1995–2012. Plots with at least 10 years of observations from the ICP Forests moni- toring network were used. Trends were assessed for the upper mineral soil (10– 20 cm, 104 plots) and subsoil (40–80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO 2 4 ) in soil solution; over a 10-year period (2000– 2010), SO 2 4 decreased by 52% at 10–20 cm and 40% at 40–80 cm. Nitrate was unchanged at 10–20 cm but decreased at 40–80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca 2+ + Mg 2+ + K + ) and Al tot over the entire dataset. The response of soil solution acidity was nonuni- form. At 10–20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40–80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pH CaCl 2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pH CaCl 2 > 4.5). In addition, the molar ratio of Bc to Al tot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitor- ing in evaluating ecosystem response to decreases in deposition.
Authors
Habtamu AlemAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
The aim of this study was to contribute to the development of pelleted compound recycling fertilizerswith favourable handling and spreading characteristics and balanced nutrient ratios by combiningnitrogen (N)- and phosphorus (P)-rich waste resources (meat bone meal, fish sludge or food waste)with potassium (K)-rich bottom wood ash. Pelleted compound recycling fertilizers with gooddurability and low dusting tendency were produced by roll-pelleting preheated waste resources at asuitable moisture content. However, the nutrient ratios in the final products were insufficientlybalanced, with too low N concentrations relative to P and K to meet crop demands. In a bioassayusing barley ( Hordeum vulgare) and a nutrient-deficient sand/peat mixture, the relative agronomiceffectiveness (RAE) of pelleted compound recycling fertilizers and reference recycling fertilizers was22–42% of that of mineral compound fertilizer. Growth limitation was due to reduced N availability(mineral fertilizer equivalent - MFE = 35–57%) or reduced P availability (MFE = 20–115%), with thegreatest P fertilizer value obtained for digestate based on dairy manure and fish sludge. Availability ofK in bottom wood ash was masked by the experimental soil.
Authors
Eveliina KallioniemiAbstract
No abstract has been registered