Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

Abstract

Forests, especially in the northern latitudes, are vulnerable ecosystems to climate change, and tree-ring data offer insights into growth-climate relationships as an important effect. Using the National Forest Inventory plot network, we analysed these correlations for the two dominant conifer species in Norway – Norway spruce and Scots pine – for the 1960–2020 period. For both species, the June climate was an important driver of radial growth during this period. Countrywide, the climate-growth correlations divided the Norwegian forests into spatial clusters following a broad shift from temperature- to water-sensitivity of growth with latitude and altitude. The clusters were delineated by a mean 1960–2020 June temperature of ca. 12°C for Norway spruce and Scots pine. The annual mean growing season and July temperatures – but not June temperature – has increased by 1.0 °C between the 1960–1990 and 1990–2020 periods, with a slight increase in precipitation. Despite this warming and wetting trend, the long-term growth-climate relationship has remained relatively stable between 1960 and 1990 and 1990–2020 for both species. The threshold between temperature and water-sensitive growth has not changed in the last two 31-year periods, following the stability of the June temperature compared with other months during the growing season. These findings highlight geographically coherent regions in Norway, segregating between temperature- and water-sensitive radial growth for the two major conifer species, temporally stable in the long-term for the 1960–2020 period studied.

To document

Abstract

Agriculture, broadly defined to include crop and livestock production, forestry, aquaculture and fishery, represents a key source or sink of greenhouse gas emissions. It is also a vulnerable sector under climate change. The term climate-smart agriculture has been widely used since its inception in 2010, but no clear and unified understanding of its scientific meaning exists. Here, we systematically analyzed the relationship between agriculture and climate change and interpreted the scientific definition of climate-smart agriculture. We believe that climate smart agriculture represents a modern production approach to coordinatively promote food security, climate mitigation benefits and agricultural adaptation to climate change towards the Sustainable Development Goals. In addition, due to the worsening global climate change situation, we expounded on the urgency and major challenges in promoting climate-smart agriculture.

Abstract

Forests are a key plank of European policies to mitigate and adapt to climate change and to promote biodiversity. These policies are starting to become more nuanced with respect to the account of their impacts on carbon storage, considering the effect of long-lived wood products and value of conserving old-growth forests, along with indirect land-use change impacts. However, a CO2-focused perspective means that many processes are still omitted for the quantification of the true extent of climate effects. Emissions of the greenhouse gases nitrous oxide and methane, short-lived climate forcers and effects from albedo changes and heat fluxes are also relevant. These processes are interconnected and influence the climate mitigation of forests in a complex way and need to be considered. The CLImate Mitigation and Bioeconomy pathways for sustainable FORESTry (CLIMB-FOREST) Horizon Europe project that runs until 2027 uses a holistic approach to estimate the climate impacts of various management alternatives. The foundation of CLIMB-FOREST is the use of European-wide empirical data, as well as an advanced coupled vegetation and earth-system modelling framework that includes biodiversity indicators and the interaction of forestry stakeholders in a global trade system. This framework is used to model management, forest tree species and climate on short- to long-term in Europe. We present first results of the climate effects and ecosystem functioning for a range of management alternatives in boreal, temperate, and Mediterranean forests. For example, introducing broadleaved trees in a coniferous forest promotes resilience and increased cooling from higher solar light scattering and latent heat flux of broadleaved trees. On the other hand, higher evapotranspiration might lead to an accelerated soil moisture depletion and reduced monoterpene emissions. The latter would have a warming effect because terpenes produce atmospheric particles, which are effective cooling agents through their involvement in cloud formation. Consequently, understanding these complex climate effects is key for appropriate climate-smart-forestry policies and approaches. The main outcomes and impacts of CLIMB-FOREST are to suggest alternative pathways for the forest sector to mitigate climate change in entire Europe, create attitude change in the policymaking process and influence foresters to adopt to new forest management strategies.

Abstract

1. Climate change is already reducing carbon sequestration in Central European forests dramatically through extensive droughts and bark beetle outbreaks. Further warming may threaten the enormous carbon reservoirs in the boreal forests in northern Europe unless disturbance risks can be reduced by adaptive forest management. The European spruce bark beetle (Ips typographus) is a major natural disturbance agent in spruce-dominated forests and can overwhelm the defences of healthy trees through pheromone-coordinated mass-attacks. 2. We used an extensive dataset of bark beetle trap counts to quantify how climatic and management-related factors influence bark beetle population sizes in boreal forests. Trap data were collected during a period without outbreaks and can thus identify mechanisms that drive populations towards outbreak thresholds. 3. The most significant predictors of bark beetle population size were the volume of mature spruce, the extent of newly exposed clearcut edges, temperature and soil moisture. For clearcut edge, temperature and soil moisture, a 3-year time lag produced the best model fit. We demonstrate how a model incorporating the most significant predictors, with a time lag, can be a useful management tool by allowing spatial prediction of future beetle population sizes. 4. Synthesis and Applications: Some of the population drivers identified here, i,e., spruce volume and clearcut edges, can be targeted by adaptive management measures to reduce the risk of future bark beetle outbreaks. Implementing such measures may help preserve future carbon sequestration of European boreal forests.

To document

Abstract

Climate change, landscape homogenization, and the decline of beneficial insects threaten pollination services to wild plants and crops. Understanding how pollination potential (i.e. the capacity of ecosystems to support pollination of plants) is affected by climate change and landscape homogenization is fundamental for our ability to predict how such anthropogenic stressors affect plant biodiversity. Models of pollinator potential are improved when based on pairwise plant–pollinator interactions and pollinator's plant preferences. However, whether the sum of predicted pairwise interactions with a plant within a habitat (a proxy for pollination potential) relates to pollen deposition on flowering plants has not yet been investigated. We sampled plant–bee interactions in 68 Scandinavian plant communities in landscapes of varying land-cover heterogeneity along a latitudinal temperature gradient of 4–8°C, and estimated pollen deposition as the number of pollen grains on flowers of the bee-pollinated plants Lotus corniculatus and Vicia cracca. We show that plant–bee interactions, and the pollination potential for these bee-pollinated plants increase with landscape diversity, annual mean temperature, and plant abundance, and decrease with distances to sand-dominated soils. Furthermore, the pollen deposition in flowers increased with the predicted pollination potential, which was driven by landscape diversity and plant abundance. Our study illustrates that the pollination potential, and thus pollen deposition, for wild plants can be mapped based on spatial models of plant–bee interactions that incorporate pollinator-specific plant preferences. Maps of pollination potential can be used to guide conservation and restoration planning.

To document

Abstract

Potato is an important part of the traditional Norwegian diet, and the crop faces several challenges with respect to pests and diseases, as well as the increasingly challenging changes in climate. Genome editing may provide tools to improve the resilience of Norwegian potato cultivars to new climate challenges. We have altered the skin colour of two potato cultivars, ‘Desirée’ and ‘Nansen’ from red to yellow, as a proof-of-concept for the use of CRISPR/Cas9 in a Norwegian cultivar. Our method has involved the use of protoplasts and we have grown the regenerants for three successive clonal tuber generations to evaluate the stability of the edited plants over time and under varying temperature conditions in contained rooms in a greenhouse. We found that the protoplast method is well suited to achieving CRISPR/Cas9 applications. The results show that the yellow skin is consistent over the three generations of tuber propagation. We found some suspected somaclonal variation in the protoplast regenerants. Some of the variation which we observed under high temperatures (up to nearly 40ºC) during the second growth cycle, disappeared when cultivated under lower temperatures in the third cultivation cycle.

To document

Abstract

Controlling creeping perennial weeds is challenging throughout all farming systems. The present study distinguished and explored three different methods to control them non-chemically: disturbance with inversion, disturbance without inversion, and competition. Focusing on Cirsium arvense, Elymus repens, and Sonchus arvensis, we conducted a field study (2019–2021) at three northern European sites in Germany, Finland, and Norway. We investigated the effects of the control methods ploughing (inversion disturbance), root cutting (non-inversion disturbance), and cover crops (competition) alone. Root cutting was conducted using a prototype machine developed by “Kverneland”. Eight treatments were tested in factorial designs adapted for each site. Control methods were applied solely and combined. Response variables after treatments were aboveground weed biomass and grain yield of spring cereals. The control method of ploughing was most effective in reducing weed biomass compared to root cutting or cover crops. However, compared to the untreated control, a pronounced additive effect of root cutting and cover crops occurred, reducing weed biomass (−57.5%) similar to ploughing (−66%). Pooled over sites, the response was species-specific, with each species showing a distinct reaction to both control methods. C. arvense was most susceptible to root cutting, followed by E. repens, while S. arvensis showed no susceptibility. Crop yield losses were prevented compared to untreated plots by ploughing (+60.57%) and root cutting (+30%), but not by cover crops. We conclude that the combination of non-inversion disturbance and competition is a promising strategy to reduce the reliance on herbicides or inversion tillage in the management of perennial weeds.