Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

Abstract

In this study, we investigated the potential of airborne imaging spectroscopy for in-season grassland yield estimation. We utilized an unmanned aerial vehicle and a hyperspectral imager to measure radiation, ranging from 455 to 780 nm. Initially, we assessed the spectral signature of five typical grassland species by principal component analysis, and identified a distinct reflectance difference, especially between the erectophil grasses and the planophil clover leaves. Then, we analyzed the reflectance of a typical Norwegian sward composition at different harvest dates. In order to estimate yields (dry matter, DM), several powered partial least squares (PPLS) regression and linear regression (LR) models were fitted to the reflectance data and prediction performance of these models were compared with that of simple LR models, based on selected vegetation indices and plant height. We achieved the highest prediction accuracies by means of PPLS, with relative errors of prediction from 9.1 to 11.8% (329 to 487 kg DM ha−1) for the individual harvest dates and 14.3% (558 kg DM ha−1) for a generalized model.

To document

Abstract

Currently, sugar snap peas are harvested manually. In high-cost countries like Norway, such a labour-intensive practise implies particularly large costs for the farmer. Hence, automated alternatives are highly sought after. This project explored a concept for robotic autonomous identification and tracking of sugar snap pea pods. The approach was based on a combination of visible–near infrared reflection measurements and image analysis, along with visual servoing. A proof-of-concept harvesting platform was implemented by mounting a robotic arm with hand-mounted sensors on a mobile unit. The platform was tested under plastic greenhouse conditions on potted plants of the sugar snap pea variety Cascadia using LED-lights and a partial shade. The results showed that it was feasible to differentiate the pods from the surrounding foliage using the light reflection at the spectral range around 970 nm combined with elementary image segmentation and shape modelling methods. The proof-of-concept harvesting platform was tested on 48 representative agricultural environments comprising dense canopy, varying pod sizes, partial occlusions and different working distances. A set of 104 images were analysed during the teleoperation experiment. The true positive detection rate was 93 and 87% for images acquired at long distances and at close distances, respectively. The robot arm achieved a success rate of 54% for autonomous visual servoing to a pre-grasp pose around targeted pods on 22 untouched scenarios. This study shows the potential of developing a prototype robot for semi-automated sugar snap pea harvesting.

2016

2015

2014

Abstract

It has been long known that thermal imaging may be used to detect stress (e.g. water and nutrient deficiency) in growing crops. Developments in microbolometer thermal cameras, such as the introduction of imaging arrays that may operate without costly active temperature stabilization, have vitalized the interest in thermal imaging for crop measurements. In this study, we have focused on the challenges occurring when temperature stabilization is omitted, including the effects of focal-plane-array (FPA) temperature, camera settings and the environment in which the measurements are performed. Further, we have designed and tested models for providing thermal response from an analog LWIR video signal (typical output from low-cost microbolometer thermal cameras). Finally, we have illustrated and discussed challenges which typically occur under practical use of thermal imaging of crops, by means of three cereal showcases, including proximal and remotely based (UAV) data acquisition. The results showed that changing FPA temperature greatly affected the measurements, and that wind and irradiance also appeared to affect the temperature dynamics considerably. Further, we found that adequate settings of camera gain and offset were crucial for obtaining a reliable result. The model which was considered best in terms of transforming video signals into thermal response data included information on camera FPA temperature, and was based on a priori calibrations using a black-body radiation source under controlled conditions. Very good calibration (r2>0.99, RMSE=0.32°C, n=96) was obtained for a target temperature range of 15-35°C, covering typical daytime crop temperatures in the growing season. However, the three showcases illustrated, that under practical conditions, more factors than FPA temperature may need to be corrected for. In conclusion, this study shows that thermal data acquisition by means of an analog, uncooled thermal camera may represent a possible, cost-efficient method for the detection of crop stress, but appropriate corrections of disturbing factors are required in order to obtain sufficient accuracy.