NIBIO's Scientific Publications

This list contains articles, books and chapters that are published in authorised publication channels in The Norwegian Register for Scientific Journals, Series and Publishers. The register shows which scientific publications are recognized in the weighted funding model. The list is sorted by latest registered publication.

2020 (357)

To document

Abstract

We employ the event study methodology and simple descriptive measures to examine the performance of the Norwegian stock market before and in the first three months after the implementation of the lockdown policy in March 2020. Most of the financial losses occurred before the lockdown decision was made. In general, price volatility has been higher since the lockdown compared to the prior period. The information technology sector has performed best in the post-lockdown period, whereas the energy and finance sectors have performed worst. However, the finance sector has had a significant recovery in the post-event period. Among the marketplaces, Oslo Axess performed best in the month following the lockdown and has also experienced less volatility than Oslo Børs. A noticeable finding is that companies with headquarters in Norway have rebounded far better than those with headquarters abroad in the post-lockdown period.

Abstract

Mountain grazing conditions represent a constraint on lamb growth performance for various reasons. One approach to counteract these effects is to graze lambs on improved pastures. We tested the effects of grazing ewes and/or their lambs on established grass-clover (GCM), chicory alone (CHA), and grassclover-chicory (GCC) stands on spring (Exp.1) and summer (Exp.2) pastures on lamb performance. We hypothesized that CHA and GCC would sustain higher spring and autumn daily gain of lambs compared with GCM. In Exp.1, 12 twin-rearing ewes together with their 24 lambs were randomly allocated into three sward types replicated twice (n=2 ewes, 4 lambs/replicate) and monitored for 25 d before sending to mountain pasture. In Exp.2, 24 weaned lambs from the mountain pasture were again randomly allocated to one of the above pasture types and grazed for 28 d. We observed differences in chemical composition and estimated energy values between swards containing chicory and GCM swards. However, these did not affect lamb performance during both experiments, contrary to our previous findings, suggesting that grazing sheep either selected against chicory, or the observed differences in chemical composition among sward types were not strong enough to influence performance, or a combination of the two possible effects

Abstract

The SusCatt project investigates alternative systems to improve sustainability in European cattle production, taking different approaches in Norway, Sweden, Germany, Poland, UK and Italy – all making greater use of pasture and forage, reducing damaging or external inputs. Rather than us deciding on how we tell everybody about findings, one project task is to ask potential audiences about their sources of information – how they gain knowledge? Ideally, this will offer guidance on an effective dissemination strategy. Project messages are relevant to multiple sectors: farmers, extension workers, consumers and policy makers. Attempts were made to survey these multiple stakeholders. We collected 236 opinions and found considerable variation, not only between groups but also between the same sectors in different countries. The most popular and highest-ranking sources overall were traditional press formats of newspapers and magazines. On the other hand, accessing information from social media was very polarised; almost non-existent for German and Polish stakeholders but widely used by UK farmers (possibly skewed by the dominance of face-to-face rather than on-line data collection). Findings suggest that each message from research projects needs a customized approach in dissemination, depending on the target audience and their regular habits of sourcing information

To document

Abstract

International expansion of forest certification programs has occurred over the last three decades. Both public and private organizations have shown increased interest in becoming certified by one or more forest certification bodies, to assure the public that forest resources are managed adequately in sustaining forest health and socio-economic viability. The Forest Stewardship Council (FSC) program is globally used as a benchmark to implement forest certification at the national and regional levels. The Sustainable Forest Initiative (SFI) and the American Tree Farm System (ATFS) are also used throughout the United States. In Europe, individual countries such as Bulgaria and Turkey have also developed national forest certification programs. The SFI, ATFS and Bulgarian programs are further endorsed by the Programme for the Endorsement of Forest Certification (PEFC). The results of a qualitative analysis comparing the FSC forest certification program with the SFI, the ATFS, and the two European national programs (Bulgarian and Turkish) suggest that differences in these programs are not necessarily related to their language, but to the level of detail and prescriptiveness of each program. We find that the FSC is much more detailed and prescriptive in nearly all aspects considered for forest certification. In particular, we find that most of the elements considered in the FSC Principle 6 (Environmental Impact) are either only superficial, or not addressed at all, in the other four programs. Furthermore, the other programs appear to be less comprehensive and detailed in the substance of the FSC monitoring and assessment principles. In a few areas, the Turkish program requires more quantitative indicators for assessing forest management than the other programs. Though a comparison of the legal framework related to forest management in each of the studied countries was briefly introduced, our study focuses on the certification schemes themselves; it may contribute to policy discussions in the future development and implementation of other certification programs.

To document

Abstract

Background The Siberian moth (Dendrolimus sibiricus) is a serious pest of conifers in Russia, Northern Kazakhstan, Mongolia and China. The western border of the pest’s distribution in Russia is disputed, but it is present west of the 60th meridian east. The pest has the potential to defoliate a wide range of conifers. Results The pest is not present in Norway or other European countries, except Russia. Natural spread and human mediated transport are potential pathways for the pest. Human mediated pathways considered are: Living trees for planting, coniferous wood in the rough and foliage and branches. There has been no import of living trees from Russia to Norway during the past 30 years, and there is currently no import of coniferous wood commodities containing bark from areas, where D. sibiricus occurs. Conclusions The probability of D. sibiricus entry by natural spread is unlikely, mainly because of the geographical distance and the partial sea barriers between Norway and the infested areas. The probability of entry by human mediated pathways is unlikely due to the very limited volume of the import. Should the pest enter Norway, the probability of establishment and spread is unlikely, due to the suboptimal climatic conditions, and the fact that the two dominant conifers in the country, Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), are intermediate and poor hosts, respectively. The potential damage, should D. sibiricus enter Norway, is considered low. Keywords: Lepidoptera, Invasive species, Geographical distribution, Forest pest

Abstract

Several scientific groups have concluded that the use of biochar as an on-farm management tool for carbon sequestration should be further investigated. Review articles also pinpoint the use of biochar to reduce greenhouse gas emissions from the entire agricultural production, and this should be studied using whole-chain models. Biochar is added to animal diets with the main purpose of enhancing animal health. There are indications that biochar fed to ruminants may reduce enteric methane emission. Twenty-four ewe lambs were fed one of two diets, a control diet (no biochar) and a biochar diet (1.4% biochar). There were no differences in dry matter intake and average daily growth rate between animals. An expected reduction in enteric methane emissions from animals fed the biochar diet was not detected. We conclude that the effect on enteric methane emissions may depend on structure and properties of the biochar offered. We suggest further research on biomass and pyrolysis of biochar to accommodate several properties as a feed additive for farm animals.

To document

Abstract

Biodiversity time series reveal global losses and accelerated redistributions of species, but no net loss in local species richness. To better understand how these patterns are linked, we quantify how individual species trajectories scale up to diversity changes using data from 68 vegetation resurvey studies of seminatural forests in Europe. Herb-layer species with small geographic ranges are being replaced by more widely distributed species, and our results suggest that this is due less to species abundances than to species nitrogen niches. Nitrogen deposition accelerates the extinctions of small-ranged, nitrogen-efficient plants and colonization by broadly distributed, nitrogen-demanding plants (including non-natives). Despite no net change in species richness at the spatial scale of a study site, the losses of small-ranged species reduce biome-scale (gamma) diversity. These results provide one mechanism to explain the directional replacement of small-ranged species within sites and thus explain patterns of biodiversity change across spatial scales.

To document

Abstract

Future increase in precipitation in Scandinavia may exacerbate the dilemma of spring fieldwork that farmers have, concerning topsoil compaction versus delayed sowing on autumn ploughed soil. The former may lead to soil physical degradation, while the latter may lead to a shorter growing season, both with consequential loss of cereal yield potential. In order to enable farmers to adapt their spring fieldwork to climate change, research needs to include seedbed preparation at higher soil moisture conditions. A split-plot experiment in southeastern Norway in 2014–2017 explored the effects of timing (early, medium, late) and traffic intensity (zero, one, two or three additional wheelings) of spring fieldwork on soil physics and yield. Early spring fieldwork in the unfavourably wet conditions of 2016 gave rise to larger and stronger aggregates, higher penetration resistance, changed pore characteristics and reduced yields. Increased penetration resistance persisted until autumn. The small effect of traffic intensity was explained by location, soil type and intensity range involved. In this context of spring fieldwork timeliness, the proportion of 2–6 mm aggregates and penetration resistance were the properties most strongly correlated with other soil physical properties and cereal yield.

Abstract

Recent discoveries have highlighted multiple mitotically and meiotically inherited alterations in gene expression that could not be explained solely by changes in the DNA sequence but were acknowledged as epigenetic. The modern view on epigenetics considers it as an integral part of genetics. Epigenetic mechanisms are encoded by genes in the genome and contribute to an essential part of genomic diversity, significantly extending its regulatory abilities. Epigenetic mechanisms involve molecular chromatin alterations through DNA methylation and histone modifications, as well as, complex non-coding RNAs and related enzyme machinery leading to changes in gene expression and resulting in changing phenotypes. In plants, epigenetic mechanisms may occur over their lifetime and across multiple generations, and can contribute substantially to phenotypic plasticity, stress responses, disease resistance, acclimation and adaptation to habitat conditions. In this review, we summarize recent advances with regards to Norway spruce epigenomics. We first consider the large size of the spruce genome that is linked to epigenetic mechanisms and why epigenomics is vitally important for spruce. Then, we discuss the molecular machinery supporting epigenetic mechanisms in Norway spruce and putative gene models involved. We presume substantial extension of gene families of epigenetic regulators and non-coding RNAs, especially in reproductive tissues. Norway spruce was the first species among forest trees in which epigenetic memory and epigenetic mechanisms were studied. The induction of an epigenetic memory during sexual reproduction and somatic embryogenesis has been described in Norway spruce. We discuss the latest results of epigenomic variation and epigenetic memory studies in Norway spruce and define the future perspectives for epigenetic studies. However, there is still a long way to decipher how the epigenetic mechanisms are involved in maintaining the stability of the spruce epigenome, how the epigenome is set to produce the epigenetic memory phenomenon and how these may result in an increased rate of adaptation to a changing environment.

Abstract

The rapidly expanding field of machine learning (ML) provides many methodological opportunities which match very well with the needs and challenges of hydrological research. Due to extended measurement networks, more frequent automatic measurements of hydrological variables, and not the least increasing use of remote sensing products, the era of big data surely has arrived in hydrology. Process-based models are usually developed for certain spatiotemporal scales, not fitting easily to the scope of the new datasets. Automatic methods that learn patterns and generalizations have been demonstrated to be superior in many applications. The chapter provides an overview of some of the most important machine learning algorithms which have been used in the hydrological literature. It will be shown that there is no single best method among them, but instead a spectrum of methods should be utilized, from highly flexible ones to more parsimonious learning methods, depending on the specific hydrological application, research question, and data availability. Most machine learning techniques require a calibration and a validation dataset for training. As these data are usually correlated in time and space, the problem of bias-variance tradeoff arises will be discussed as a simple example. The presentation of ML algorithms, roughly following chronological order, is discussed starting with artificial neural networks through support vector machines to gradient boosting machines. As data streams increase, these and other machine learning techniques will play an ever more important role in hydrology.

To document

Abstract

Background Ecological communities tend to be spatially structured due to environmental gradients and/or spatially contagious processes such as growth, dispersion and species interactions. Data transformation followed by usage of algorithms such as Redundancy Analysis (RDA) is a fairly common approach in studies searching for spatial structure in ecological communities, despite recent suggestions advocating the use of Generalized Linear Models (GLMs). Here, we compared the performance of GLMs and RDA in describing spatial structure in ecological community composition data. We simulated realistic presence/absence data typical of many β-diversity studies. For model selection we used standard methods commonly used in most studies involving RDA and GLMs. Methods We simulated communities with known spatial structure, based on three real spatial community presence/absence datasets (one terrestrial, one marine and one freshwater). We used spatial eigenvectors as explanatory variables. We varied the number of non-zero coefficients of the spatial variables, and the spatial scales with which these coefficients were associated and then compared the performance of GLMs and RDA frameworks to correctly retrieve the spatial patterns contained in the simulated communities. We used two different methods for model selection, Forward Selection (FW) for RDA and the Akaike Information Criterion (AIC) for GLMs. The performance of each method was assessed by scoring overall accuracy as the proportion of variables whose inclusion/exclusion status was correct, and by distinguishing which kind of error was observed for each method. We also assessed whether errors in variable selection could affect the interpretation of spatial structure. Results Overall GLM with AIC-based model selection (GLM/AIC) performed better than RDA/FW in selecting spatial explanatory variables, although under some simulations the methods performed similarly. In general, RDA/FW performed unpredictably, often retaining too many explanatory variables and selecting variables associated with incorrect spatial scales. The spatial scale of the pattern had a negligible effect on GLM/AIC performance but consistently affected RDA’s error rates under almost all scenarios. Conclusion We encourage the use of GLM/AIC for studies searching for spatial drivers of species presence/absence patterns, since this framework outperformed RDA/FW in situations most likely to be found in natural communities. It is likely that such recommendations might extend to other types of explanatory variables.

To document

Abstract

No abstract has been registered

Abstract

Farmers in Northern Norway frequently experience winter damaged fields caused by ice encasement. The economic consequences are severe due to loss of fodder and costs with reestablishment of swards. It is therefore important to choose the best available varieties for the local climatic and environmental conditions. We tested eight Norwegian cultivars of timothy (Phleum pratense), for tolerance to ice encasement and their regrowth capacity. Both old and new cultivars, and cultivars with good overwintering capacity and less biomass production were tested against more productive cultivars with less overwintering capacity. The experiment was a semi-field setup and plants were established in pots which were placed outside. Half of the pots were covered with ice and half were kept under snow cover. During four months, pots were brought, once per month, into a greenhouse for thawing and measurement of biomass production under normal growth conditions. The results indicate that the old winter hardy cultivar ‘Engmo’ is least affected by ice encasement but produces little biomass. The joint Nordic cultivar ‘Snorri’ produced most biomass of all the cultivars after a treatment with ice cover. In conclusion, there is a large difference between cultivars in ice encasement tolerance, and ice cover affected regrowth capacity far more than snow cover

Abstract

Enkeltforskere har snakket om sammenhengen mellom CO₂-utslipp og klimaoppvarming i 150 år. Fra 1950-tallet økte interessen for fenomenet. I hvilken grad var denne innsikten en del av offentlig norsk debatt, og hvordan ble innsikten formidlet til allmennheten i nyhetene? En gjennomgang av nyhetsartikler og innsendt meningsstoff i Aftenposten, Dagbladet og VG i perioden 1959-1988, med ordet «drivhuseffekt» som arkivmarkør, ga til sammen 2859 treff i de tre avisene, med den største andelen i Aftenposten – 1735 treff. 44 prosent var nyhetsstoff og 17 prosent kronikker og debattinnlegg. Av meningsstoffet utgjorde debattinnleggene ti og kronikkene sju prosent. Tre til fire prosent av meningsstoffet stammer fra en kronikk skrevet av en forsker. Resultatene viser at kunnskapen om en mulig menneskeskapt klimaendring ble formidlet til et norsk avislesende publikum allerede på 1960-tallet. Men til tross for mange tegn som pekte i samme retning, var forskerne ofte forsiktige. Journalistene var djervere når de formidlet farene ved økt forbrenning av fossilt brennstoff.

To document

Abstract

Fusarium circinatum, the causal agent of pine pitch canker (PPC), is currently one of the most important threats of Pinus spp. globally. This pathogen is known in many pine-growing regions, including natural and planted forests, and can affect all life stages of trees, from emerging seedlings to mature trees. Despite the importance of PPC, the global distribution of F. circinatum is poorly documented, and this problem is also true of the hosts within countries that are affected. The aim of this study was to review the global distribution of F. circinatum, with a particular focus on Europe. We considered (1) the current and historical pathogen records, both positive and negative, based on confirmed reports from Europe and globally; (2) the genetic diversity and population structure of the pathogen; (3) the current distribution of PPC in Europe, comparing published models of predicted disease distribution; and (4) host susceptibility by reviewing literature and generating a comprehensive list of known hosts for the fungus. These data were collated from 41 countries and used to compile a specially constructed geo-database. A review of 6297 observation records showed that F. circinatum and the symptoms it causes on conifers occurred in 14 countries, including four in Europe, and is absent in 28 countries. Field observations and experimental data from 138 host species revealed 106 susceptible host species including 85 Pinus species, 6 non-pine tree species and 15 grass and herb species. Our data confirm that susceptibility to F. circinatum varies between different host species, tree ages and environmental characteristics. Knowledge on the geographic distribution, host range and the relative susceptibility of different hosts is essential for disease management, mitigation and containment strategies. The findings reported in this review will support countries that are currently free of F. circinatum in implementing effective procedures and restrictions and prevent further spread of the pathogen.

Abstract

Citizen science can facilitate in‐depth learning for pupils and students, contribute to scientific research, and permit civic participation. Here, we describe the development of the transnational school‐based citizen science project Phenology of the North Calotte. Its primary goal is to introduce pupils (age 12–15; grades 7–10) in northern Norway, Russia, and Finland to the local and global challenges of climate change resulting in life cycle changes at different trophic and ecosystem levels in their backyards. Partnerships between regional scientists and staff from NIBIO Svanhovd, State nature reserves, national parks, and teachers and pupils from regional schools aim to engage pupils in project‐based learning. The project uses standardized protocols, translated into the different languages of participating schools. The phenological observations are centered around documenting clearly defined life cycle phases (e.g., first appearance of species, flowering, ripening, leaf yellowing, snow fall, and melt). The observations are collected either on paper and are subsequently submitted manually to an open‐source online database or submitted directly via a newly developed mobile app. In the long term, the database is anticipated to contribute to research studying changes in phenology at different trophic levels. In principle, guided school‐based citizen science projects have the potential to contribute to increased environmental awareness and education and thereby to transformative learning at the societal level while contributing to scientific progress of understudied biomes, like the northern taiga and (sub)arctic tundra. However, differences in school systems and funding insecurity for some schools have been major prohibiting factors for long‐term retention of pupils/schools in the program. Project‐based and multidisciplinary learning, although pedagogically desired, has been partially difficult to implement in participating schools, pointing to the need of structural changes in national school curricula and funding schemes as well as continuous offers for training and networking for teachers.

Abstract

In this study, we aim at developing ways to directly translate raw drone data into actionable insights, thus enabling us to make management decisions directly from drone data. Drone photogrammetric data and data analytics were used to model stand-level immediate tending need and cost in regeneration forests. Field reference data were used to train and validate a logistic model for the binary classification of immediate tending need and a multiple linear regression model to predict the cost to perform the tending operation. The performance of the models derived from drone data was compared to models utilizing the following alternative data sources: airborne laser scanning data (ALS), prior information from forest management plans (Prior) and the combination of drone +Prior and ALS +Prior. The use of drone data and prior information outperformed the remaining alternatives in terms of classification of tending needs, whereas drone data alone resulted in the most accurate cost models. Our results are encouraging for further use of drones in the operational management of regeneration forests and show that drone data and data analytics are useful for deriving actionable insights. Key words: UAV, DAP, forest inventory, photogrammetry, precommercial thinning, airborne laser scanning.

To document

Abstract

The consequences of the Cretaceous–Paleogene (K–Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs during early legume evolution using gene tree reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 36 nuclear genes selected as informative and evolving in an approximately clock-like fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. Results suggest either a pan-legume WGD event on the stem lineage of the family, or an allopolyploid event involving (some of) the earliest lineages within the crown group, with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. Gene tree reconciliation methods that do not account for allopolyploidy may be misleading in inferring an earlier WGD event at the time of divergence of the two parental lineages of the polyploid, suggesting that the allopolyploid scenario is more likely. We show that the crown age of the legumes dates to the Maastrichtian or early Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic. [Allopolyploidy; Cretaceous–Paleogene (K–Pg) boundary; Fabaceae, Leguminosae; paleopolyploidy; phylogenomics; whole genome duplication events]

To document

Abstract

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. Previously (Geiser et al. 2013; Phytopathology 103:400-408. 2013), the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani Species Complex (FSSC). Subsequently, this concept was challenged by one research group (Lombard et al. 2015 Studies in Mycology 80: 189-245) who proposed dividing Fusarium into seven genera, including the FSSC as the genus Neocosmospora, with subsequent justification based on claims that the Geiser et al. (2013) concept of Fusarium is polyphyletic (Sandoval-Denis et al. 2018; Persoonia 41:109-129). Here we test this claim, and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species recently described as Neocosmospora were recombined in Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural and practical taxonomic option available.

To document

Abstract

Fog is a defining characteristic of the climate of the Namib Desert, and its water and nutrient input are important for local ecosystems. In part due to sparse observation data, the local mechanisms that lead to fog occurrence in the Namib are not yet fully understood, and to date, potential synoptic-scale controls have not been investigated. In this study, a recently established 14-year data set of satellite observations of fog and low clouds in the central Namib is analyzed in conjunction with reanalysis data in order to identify synoptic-scale patterns associated with fog and low-cloud variability in the central Namib during two seasons with different spatial fog occurrence patterns. It is found that during both seasons, mean sea level pressure and geopotential height at 500 hPa differ markedly between fog/low-cloud and clear days, with patterns indicating the presence of synoptic-scale disturbances on fog and low-cloud days. These regularly occurring disturbances increase the probability of fog and low-cloud occurrence in the central Namib in two main ways: (1) an anomalously dry free troposphere in the coastal region of the Namib leads to stronger longwave cooling of the marine boundary layer, increasing low-cloud cover, especially over the ocean where the anomaly is strongest; (2) local wind systems are modulated, leading to an onshore anomaly of marine boundary-layer air masses. This is consistent with air mass back trajectories and a principal component analysis of spatial wind patterns that point to advected marine boundary-layer air masses on fog and low-cloud days, whereas subsiding continental air masses dominate on clear days. Large-scale free-tropospheric moisture transport into southern Africa seems to be a key factor modulating the onshore advection of marine boundary-layer air masses during April, May, and June, as the associated increase in greenhouse gas warming and thus surface heating are observed to contribute to a continental heat low anomaly. A statistical model is trained to discriminate between fog/low-cloud and clear days based on information on large-scale dynamics. The model accurately predicts fog and low-cloud days, illustrating the importance of large-scale pressure modulation and advective processes. It can be concluded that regional fog in the Namib is predominantly of an advective nature and that fog and low-cloud cover is effectively maintained by increased cloud-top radiative cooling. Seasonally different manifestations of synoptic-scale disturbances act to modify its day-to-day variability and the balance of mechanisms leading to its formation and maintenance. The results are the basis for a new conceptual model of the synoptic-scale mechanisms that control fog and low-cloud variability in the Namib Desert and will guide future studies of coastal fog regimes.

To document

Abstract

Heavy metals in soil pose a constant risk for animals and humans when entering their food chains, and limited means are available to reduce plant accumulation from more or less polluted soils. Biochar, which is made by pyrolysis of organic residues and sees increasing use as a soil amendment to mitigate anthropogenic C emissions and improve agronomic soil properties, has also been shown to reduce plant availability of heavy metals in soils. The cause for the reduction of metal uptake in plants when grown in soils enriched with biochar has generally been researched in terms of increased pH and alkalinity, while other potential mechanisms have been less studied. We conducted a pot experiment with barley using three soils differing in metal content and amended or not with 2% biochar made from Miscanthus x giganteus, and assessed plant contents and changes in bioavailability in bulk and rhizosphere soil by measuring extractability in acetic acid or ammonium nitrate. In spite of negligible pH changes upon biochar amendment, the results showed that biochar reduced extractability of Cu, Pb and Zn, but not of Cd. Rhizosphere soil contained more easily extractable Cu, Pb and Zn than bulk soil, while for Cd it did not. Generally, reduced plant uptake due to biochar was reflected in the amounts of metals extractable with ammonium nitrate, but not acetic acid.

To document

Abstract

Optimizing nitrogen (N) management in rice is crucial for China’s food security and sustainable agricultural development. Nondestructive crop growth monitoring based on remote sensing technologies can accurately assess crop N status, which may be used to guide the in-season site-specific N recommendations. The fixed-wing unmanned aerial vehicle (UAV)-based remote sensing is a low-cost, easy-to-operate technology for collecting spectral reflectance imagery, an important data source for precision N management. The relationships between many vegetation indices (VIs) derived from spectral reflectance data and crop parameters are known to be nonlinear. As a result, nonlinear machine learning methods have the potential to improve the estimation accuracy. The objective of this study was to evaluate five different approaches for estimating rice (Oryza sativa L.) aboveground biomass (AGB), plant N uptake (PNU), and N nutrition index (NNI) at stem elongation (SE) and heading (HD) stages in Northeast China: (1) single VI (SVI); (2) stepwise multiple linear regression (SMLR); (3) random forest (RF); (4) support vector machine (SVM); and (5) artificial neural networks (ANN) regression. The results indicated that machine learning methods improved the NNI estimation compared to VI-SLR and SMLR methods. The RF algorithm performed the best for estimating NNI (R2 = 0.94 (SE) and 0.96 (HD) for calibration and 0.61 (SE) and 0.79 (HD) for validation). The root mean square errors (RMSEs) were 0.09, and the relative errors were <10% in all the models. It is concluded that the RF machine learning regression can significantly improve the estimation of rice N status using UAV remote sensing. The application machine learning methods offers a new opportunity to better use remote sensing data for monitoring crop growth conditions and guiding precision crop management. More studies are needed to further improve these machine learning-based models by combining both remote sensing data and other related soil, weather, and management information for applications in precision N and crop management.

To document

Abstract

SCANTURF is a joint Nordic programme for turfgrass variety testing, set up in 2005 and funded by variety entrance fees only. It replaced and simplified the former government‐funded national evaluation programmes in Finland, Sweden, Denmark and Norway. The programme includes testing of all cool‐season grasses on lawn/fairways at 15–20 mm mowing height (“lawn trials”) and optional testing of Poa pratensis L. and Lolium perenne L. on simulated football pitches with wear, mowed at 30 mm (“wear trials”). Since 2013, the program has regarded the Nordic countries as one trial zone with three test sites: Tystofte Denmark (55°15′ N, 11°20′ E), Landvik, Norway (58°21’ N, 8°32’ E) and Ylistaro, Finland (62°57′ N, 22°31’ E). Wear trials are carried out at the intermediate location Landvik only. Candidate varieties are tested against two reference varieties of the same species or subspecies. In the lawn trials, candidate varieties are evaluated for visual merit (overall turfgrass quality), winter damage, winter color, diseases and daily height growth at all three locations and for tiller density, fineness of leaves, in‐season (genetic) color, at Landvik only. Based on the results from the SCANTURF trials in 2014–2016 and 2016–2018, the candidate varieties Fabian, Tetrastar, Annecy, and Monroe (Lolium perenne), Becca, Harmonie, Traction, and Markus (Poa pratensis) and Lystig, Greenmile, and Humboldt (Festuca rubra ssp. commutata) were recommended for lawns in the Nordic countries, while Eurocordus, Columbine, Monroe, and Annecy (Lolium perenne) and Harmonie (Poa pratensis) were recommended for sports grounds. More use of the recommended varieties will have a positive effect on quality of lawns and sport grounds in the Nordic countries. Less winter injury and increasing relative performance with increasing latitude of the tetraploid perennial ryegrass variety Fabian in the lawn trials may possibly lead to more use of perennial ryegrass in the northern and more continental parts of the region.

To document

Abstract

The major part of Norwegian apples is marketed within 3-4 months after harvest. ‘Summerred’ is a popular medium early cultivar in Norway, however, it is known to soften quickly during storage and marketing. Storing apples in low temperature and low oxygen atmosphere will slow down the ripening and the fruit will keep green and firm. Delayed cooling has been reported to reduce susceptibility to develop physiological disorders like scald. The experiment included different strategies in delaying cooling (5 days at 7°C) and allowing the apples to reach 1 kPa oxygen storage after an intermediate period (5 days) at 3 kPa oxygen. The main focus was on changes in firmness, degreening, scald and fruit rots. The apples were stored for 3, 6 or 9 weeks in 1 or 4°C and analyzed for standard fruit quality factors (color, firmness, IAD-index, starch, soluble solids content and titratable acidity) as the samples were removed from low temperature and low oxygen storage and after a week at 20°C in regular atmosphere (shelf life). Physiological disorders and fruit rots were registered. In these experiments the fruit quality changes were greater (poorer quality) in apples kept at 7°C for 5 days before storage at 1 or 4°C compared to apples stored immediately at low temperature. The intermediate storage in 3 kPa oxygen tended to make the apples keep firmer during storage. The stepwise reduction in oxygen content reduced the negative effect of delayed cooling. Delayed cooling slowed the starch degradation. The incidences of soft scald and fruit rots were low, and the effects of delayed cooling and/or delayed low oxygen storage were weak.

To document

Abstract

This paper presents an online educational game focusing on hierarchical procurement planning in a simulated forest supply chain with multiple companies. The purpose is to provide an understanding of the importance of individual decisions and their medium- to long-term impacts on the entire supply chain. The transportation game comprises three phases, each simulating hierarchical decision making when three competing companies (i.e., the game players) are making simultaneous decisions on the available resources. Each game phase also requires concurrent collaboration and competition. The phases represent different planning levels from long-term to short-term planning, considering the collaboration concept within the supply chain. The simulated supply chain objective is to minimize resource purchasing and transportation costs. The purchasing cost will be fixed after the first phase. The chance of decreasing transportation costs, however, is available until the end of the game. We develop three optimization models for each game phase. Once the game is finished, it compares the players’ results with optimal solutions prepared upfront. Finally, we present some comments about the game experience in various classrooms.

To document See dataset

Abstract

The dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations. This dataset covers most of the geographical and climatic range occupied by the selected species. The potential use of it will be highly valuable for assessing ecological and evolutionary responses to environmental conditions as well as for model development and parameterization, to predict adaptability under climate change scenarios.

Abstract

Perennial versus short term (<3 years) grass vegetation cover is likely to have considerable differences in root density and thus carbon (C) inputs to soil. Carbon inputs are important to maintain soil organic carbon (SOC) and may even increase it. In Norway and Scandinavia, the SOC content in soil is often higher than in other parts of Europe, due to the cold climate and high precipitation (i.e. slower turnover rates for soil organic matter) and a dominance of animal production systems with a large amount of grassland. Here we aimed to evaluate differences in SOC content, down to 60 cm depth, of a long-term grassland (without ploughing for decades) and a short-term grassland (frequently renewed by ploughing) under contrasting climate, soil and management conditions. Quantification of SOC was carried out on three long-term experimental sites on an extended latitude gradient in West and North Norway. The samples were taken from 4 depth increments (0-5, 5-20, 20-40 and 40-60 cm) in treatments that have not been ploughed for at least 43 years, and in treatments that were ploughed every third year until 2011. Preliminary results suggest that there is no significant difference in SOC storage down to 60 cm between long-term and short-term grasslands.

Abstract

According to the World Health Organization a diet high in vegetables may reduce the risk of coronary heart diseases, stroke, and certain types of cancer. In addition, vegetables have lower carbon footprints than most other foods. The main objective in this paper is to find drivers behind vegetable consumption, with emphasis on health and environmental motivation. We used the theory of planned behavior together with direct acyclic graphs as a theoretical basis. The empirical analysis applied the graded response model and bounded beta regression with survey data from 2019. The main results show that health attitude is a stronger motivator for vegetable consumption than environmental attitudes.

Abstract

Phosphorus retention and bank erosion was investigated in two types of buffer zones in cereal fields in Norway: zones used for grass production and zones with natural vegetation. Farmers’ views on the two types of buffer zones were collected through questionnaires and indepth interviews. Our results indicate that the grassed buffer zones had higher levels of plant-available phosphorus and lower infiltration rates than the natural ones. Bank erosion was higher in zones with grass production than those with trees. Interviews with farmers revealed diverging opinions on the zones. Most farmers were sceptical to natural vegetation with trees, whereas farmers who had already planted trees in the riparian zones were generally satisfied. Buffer zones can have many different functions, and we conclude that a holistic approach is needed when assessing the usefulness of this measure, taking into account water quality, biodiversity and the production of food, fodder and biomass.

To document

Abstract

To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5 °C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large‐scale deployment of other climate mitigation strategies are also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N2O), a powerful greenhouse gas, and increasing SOC may influence N2O emissions, likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC storage. Here, we review the main agricultural management options for increasing SOC stocks. We evaluate the amount of SOC that can be stored as well as resulting changes in N2O emissions to better estimate the climate benefits of these management options. Based on quantitative data obtained from published meta‐analyses and from our current level of understanding, we conclude that the climate mitigation induced by increased SOC storage is generally overestimated if associated N2O emissions are not considered but, with the exception of reduced tillage, is never fully offset. Some options (e.g, biochar or non‐pyrogenic C amendment application) may even decrease N2O emissions.

Abstract

The development of a new bioeconomy implies an increased need for renewable biological resources. This means that more of the existing biomass will be har vested and a larger land area is likely to be utilized. While it is widely acknowl edged that this increased harvest and production must be sustainable, it must also be acknowledged that there are some potential challenges. For example, there may be different aims targeting the same area. To meet this challenge in an informed approach, we argue that geographical data and spatial analyses are key. We exemplify this through a study in which we utilize the spatial distribution of produced biomass from agriculture and forestry, together with the location of threatened species from the Norwegian Red List of Species. In our analyses we demonstrate that there is a spatial overlap between the most productive land for forestry and agriculture. At the same time, a high occurrence of threatened spe cies is also found in these areas. We conclude that analysing the geography of conflicting aims is important. It documents the importance of spatial data, and findings from this type of analyses need to be included in bioeconomy decision making.

To document

Abstract

The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.

To document

Abstract

Controlled crosses were made on clones in a seed orchard and the pollination bags were kept on the branches until the cones were harvested. Cones after open pollination were collected at the same time. Seedlings from the controlled pollinations, from open pollination of the same maternal parent and from commercial provenances were grown in growth chambers and terminal bud set was recorded after short day treatments. The seedlings from the seeds of cones that were kept in the pollination bags had a significantly later bud set then expected based on comparisons with their half-sibs from open pollination. The difference corresponds to a decrease in altitude of 100 m at provenance level. It can be caused by epigenetic effects due to temperature differences inside and outside the bags during seed maturation.

To document

Abstract

Questions Have species richness and composition in subarctic vegetation changed over the past ca. 90 years? Are compositional shifts linked to changes in land management or climate? Are observed changes associated with vegetation type, life form, or habitat preference? Location Rybachy and Sredny Peninsulas, NW Russia. Methods We resurveyed vegetation ca. 90 years after the first sampling in 1927–1930 to study changes in species richness, abundance and composition. Because of missing plot‐related environmental measurements we used a weighted averaging approach calculating relative changes in species‐specific optimum values for different environmental gradients represented by species indicator values to identify compositional change in relation to the environment. Changes in species composition were visualised using detrended correspondence analyses. Significances of observed changes in species richness and frequency were evaluated using restricted permutation tests. A χ2 test was used to test if observed changes in abundances were related to species’ life form and habitat preferences. Results Species composition has changed significantly over the past ca. 90 years, as indicated by significant changes in species’ frequencies and values of optima for the environmental gradients temperature, moisture, nutrients and light. Species richness decreased significantly, in particular in nitrophilous and wet growing vegetation. Species typical for grazed grasslands and meadows and species of wet habitats became less abundant, while dwarf shrubs and forest species increased. Conclusions Land abandonment, in combination with climate change, is likely to have caused the observed changes in the subarctic vegetation of NW Russia. Shifts in the species dominance ratios and interspecific competition (e.g. for reallocated nutrients) after land abandonment may have been promoted by the subsequent change towards a warmer climate, facilitating the regrowth of previously open meadows with grazing‐intolerant tall herbs, forest herbs and dwarf shrubs. This study illustrates clearly the long‐term effects of land‐use change, the consequences of which are still visible even after almost one century in the subarctic.

To document

Abstract

This article presents input data and procedures used to estimate costs of producing grass-clover silages under Norwegian farming conditions. Data of yield, botanical composition and forage quality of the grass crop were derived from a field experiment comparing a three-cut system, harvested at early crop maturity stages producing highly digestible forages, and a two-cut system returning higher herbage yields of medium digestibility. Secondary data on prices of specific inputs were also provided. The data presented here can be used by advisors and farmers as a decision support tool for assessing and comparing costs of different ways of producing silage. Cost estimates of home-grown forages are also needed in bioeconomic evaluations of grassland production and utilization by researchers. The data presented is related to the research article entitled: “Technical and economic performance of alternative feeds in dairy and pig production” [1].

Abstract

Past: In the early twentieth century, forestry was one of the most important sectors in Norway and an agitated discussion about the perceived decline of forest resources due to over-exploitation was ongoing. To base the discussion on facts, the young state of Norway established Landsskogtakseringen – the world’s first National Forest Inventory (NFI). Field work started in 1919 and was carried out by county. Trees were recorded on 10 m wide strips with 1–5 km interspaces. Site quality and land cover categories were recorded along each strip. Results for the first county were published in 1920, and by 1930 most forests below the coniferous tree line were inventoried. The 2nd to 5th inventories followed in the years 1937–1986. As of 1954, temporary sample plot clusters on a 3 km × 3 km grid were used as sampling units. Present: The current NFI grid was implemented in the 6th NFI from 1986 to 1993, when permanent plots on a 3 km × 3 km grid were established below the coniferous tree line. As of the 7th inventory in 1994, the NFI is continuous, and 1/5 of the plots are measured annually. All trees with a diameter ≥ 5 cm are recorded on circular, 250 m2 plots. The NFI grid was expanded in 2005 to cover alpine regions with 3 km × 9 km and 9 km × 9 km grids. In 2012, the NFI grid within forest reserves was doubled along the cardinal directions. Clustered temporary plots are used periodically to facilitate county-level estimates. As of today, more than 120 variables are recorded in the NFI including bilberry cover, drainage status, deadwood, and forest health. Landuse changes are monitored and trees outside forests are recorded. Future: Considerable research efforts towards the integration of remote sensing technologies enable the publication of the Norwegian Forest Resource Map since 2015, which is also used for small area estimation at the municipality level. On the analysis side, capacity and software for long term growth and yield prognosis are being developed. Furthermore, we foresee the inclusion of further variables for monitoring ecosystem services, and an increasing demand for mapped information. The relatively simple NFI design has proven to be a robust choice for satisfying steadily increasing information needs and concurrently providing consistent time series.

To document

Abstract

This study evaluated the suitability of different airborne laser scanning (ALS) datasets for the prediction of forest canopy fuel parameters in managed boreal forests in Finland. The ALS data alternatives were leaf-off and leaf-on unispectral and leaf-on multispectral data, alone and combined with aerial images. Canopy fuel weight, canopy base height, biomass of living and dead trees, and height and biomass of the understory tree layer were predicted using regression analysis. The considered categorical forest parameters were dominant tree species, site fertility and vertical forest structure layers. The canopy fuel weight was modeled based on crown biomass with an RMSE% value of 20–30%. The canopy base heights were predicted separately for pine and spruce stands with satisfactory results the RMSE% values being 9–10% and 15–17%, respectively. Following the initial classification of the existence of an understory layer (with kappa-values of 0.47–0.53), the prediction of understory height performed well (RMSE% 20–25%) but the understory biomass was predicted with larger RMSE% values (about 60–70%). Site fertility was classified with kappa-values of 0.5–0.6. The most accurate results were obtained using multispectral ALS data, although the differences between the datasets were minor.

To document

Abstract

Many of the world’s peatlands have been affected by water table drawdown and subsequent loss of organic matter. Rewetting has been proposed as a measure to restore peatland functioning and to halt carbon loss, but its effectiveness is subject to debate. An important prerequisite for peatland recovery is a return of typical microbial communities, which drive key processes. To evaluate the effect of rewetting, we investigated 13 fen peatland areas across a wide (>1500 km) longitudinal gradient in Europe, in which we compared microbial communities between drained, undrained, and rewetted sites. There was a clear difference in microbial communities between drained and undrained fens, regardless of location. Community recovery upon rewetting was substantial in the majority of sites, and predictive functional profiling suggested a concomitant recovery of biogeochemical peatland functioning. However, communities in rewetted sites were only similar to those of undrained sites when soil organic matter quality (as expressed by cellulose fractions) and quantity were still sufficiently high. We estimate that a minimum organic matter content of ca. 70% is required to enable microbial recovery. We conclude that peatland recovery after rewetting is conditional on the level of drainage-induced degradation: severely altered physicochemical peat properties may preclude complete recovery for decades.

To document

Abstract

Enset (Ensete ventricosum) is an important starch staple crop, cultivated primarily in south and southwestern Ethiopia. Enset is the main crop of a sustainable indigenous African system that ensures food security in a country that is food deficient. Related to the banana family, enset is similarly affected by plant-parasitic nematodes. Plant-parasitic nematodes impose a huge constraint on agriculture. The distribution, population density and incidence of plant-parasitic nematodes of enset was determined during August 2018. A total of 308 fields were sampled from major enset-growing zones of Ethiopia. Eleven plant-parasitic nematode taxa were identified, with Pratylenchus (lesion nematode) being the most prominent genus present with a prominence value of 1460. It was present in each sample, with a highest mean population density per growing zone of 16 050 (10 g root)−1, although densities as high as 25 000 were observed in fields at higher altitudes in Guraghe (2200-3000 m a.s.l.). This lesion nematode is found in abundance in the cooler mountainous regions. Visible damage on the roots and corms was manifested as dark purple lesions. Using a combination of morphometric and molecular data, all populations were identified as P. goodeyi and similar to populations from Kenya, Uganda and Spain (Tenerife). Differences in population densities amongst cultivars indicate possible resistance of enset to P. goodeyi.

To document

Abstract

Degraded tropical forests that were converted into pastures dominated by exotic grasses are a challenge for restoration due to arrested succession. Nucleation is a suitable strategy to restore such abandoned pastures as it can overcome seed and site limitation, and would foster the recovery of structural, functional, and species diversity. To explore the outcomes of different nucleation techniques in terms of richness, functional diversity, resource offer, and species and trait composition during the first year after implementation in an abandoned pasture in the tropical Andes, we conducted a field experiment with four nucleation treatments established in 1-m2 subplots, i.e. natural regeneration (control), seed rain transfer, seed bank transfer, and pre-grown plant mats. Number of species, functional diversity, proportion of natives, flowering and fruiting were response variables of the nucleation treatments and time since restoration using linear mixed-effects models. Species and trait composition trajectories over time were depicted with NMDS. Species richness and functional diversity of understory vegetation increased over time and with nucleation, being significantly higher by the final survey. Seed bank transfer introduced most species to the area in comparison to natural regeneration. Functional diversity, proportion of native, flowering, and fruiting species changed with time albeit with no differences among treatments. Species and trait composition showed convergence over time, which stresses the strong influence of environmental filtering in early restoration of abandoned pastures. Although positive aspects of planting trees and shrubs cannot be neglected, we argue that the incorporation of (several) more sophisticated nucleation techniques is beneficial for restoration of tropical forests.

To document

Abstract

Sunlight absorbed at the Earth’s surface is re-emitted as longwave radiation. Increasing atmospheric concentrations of CO2 and other greenhouse gases trap an increasing fraction of such heat, leading to global climate change. Here we show that when a chlorophyll (Chl)-deficient soybean mutant is grown in the field, the fraction of solar-irradiance which is reflected, rather than absorbed, is consistently higher than in commercial varieties. But, while the effect on radiative forcing during the crop cycle at the scale of the individual experimental plot was found to be large (−4.1± 0.6 W m−2 ), global substitution of the current varieties with this genotype would cause a small increase in global surface albedo, resulting in a global shortwave radiative forcing of −0.003 W m−2 , corresponding to 4.4 Gt CO2eq. At present, this offsetting effect would come at the expense of reductions to yields, probably associated with different dynamic of photosynthetic response in the Chl-deficient mutant. The idea of reducing surface-driven radiative forcing by means of Chl-deficient crops therefore requires that novel high-yielding and high-albedo crops are made available soon.

To document

Abstract

The dynamic interactions between soil, weather and crop management have considerable influences on crop yield within a region, and should be considered in optimizing nitrogen (N) management. The objectives of this study were to determine the influence of soil type, weather conditions and planting density on economic optimal N rate (EONR), and to evaluate the potential benefits of site-specific N management strategies for maize production. The experiments were conducted in two soil types (black and aeolian sandy soils) from 2015 to 2017, involving different N rates (0 to 300 kg ha−1) with three planting densities (55,000, 70,000, and 85,000 plant ha−1) in Northeast China. The results showed that the average EONR was higher in black soil (265 kg ha−1) than in aeolian sandy soil (186 kg ha−1). Conversely, EONR showed higher variability in aeolian sandy soil (coefficient of variation (CV) = 30%) than in black soil (CV = 10%) across different weather conditions and planting densities. Compared with farmer N rate (FNR), applying soil-specific EONR (SS-EONR), soil- and year-specific EONR (SYS-EONR) and soil-, year-, and planting density-specific EONR (SYDS-EONR) would significantly reduce N rate by 25%, 30% and 38%, increase net return (NR) by 155 $ ha−1, 176 $ ha−1, and 163 $ ha−1, and improve N use efficiency (NUE) by 37–42%, 52%, and 67–71% across site-years, respectively. Compared with regional optimal N rate (RONR), applying SS-EONR, SYS-EONR and SYDS-EONR would significantly reduce N application rate by 6%, 12%, and 22%, while increasing NUE by 7–8%, 16–19% and 28–34% without significantly affecting yield or NR, respectively. It is concluded that soil-specific N management has the potential to improve maize NUE compared with both farmer practice and regional optimal N management in Northeast China, especially when each year’s weather condition and planting density information is also considered. More studies are needed to develop practical in-season soil (site)-specific N management strategies using crop sensing and modeling technologies to better account for soil, weather and planting density variation under diverse on-farm conditions.

To document

Abstract

Potato cyst nematodes (PCN), such as Globodera rostochiensis and Globodera pallida, are quarantine restricted pests of potato causing major yield and financial losses to farmers. G. rostochiensis was first reported from Kenya’s key potato growing area in 2015. We sought to determine the diversity, prevalence and distribution of PCN species across the country by conducting a country-wide survey between 2016 and 2018, which included a more focused, follow-up assessment in three key potato growing counties. A total of 1,348 soil samples were collected from 20 potato growing counties. Information regarding local potato farming practices, potato cultivar use, their diversity and availability was also recorded. PCN cysts were obtained from 968 samples (71.8%) in all the counties surveyed, with Nyandarua County recording the highest PCN field-incidence at 47.6%. The majority of PCN populations, 99.9%, were identified as G. rostochiensis, while G. pallida was recovered from just one field, in a mixed population with G. rostochiensis. Inconsistencies in PCR amplification efficiency was observed for G. rostochiensis using the recommended EPPO primers, compared with ITS primers AB28/TW81, indicating that this protocol cannot be entirely relied upon to effectively detect PCN. Egg density in Nyandarua County varied between 30.6 and 158.5 viable eggs/g soil, with an average egg viability of 78.9 ± 2.8% (min = 11.6%, max = 99.9%). The PCN-susceptible potato cultivar named Shangi was the most preferred and used by 65% of farmers due to its shorter dormancy and cooking time, while imported cultivars (Destiny, Jelly, Manitou, and Markies) with resistance to G. rostochiensis were used by 7.5% of farmers due to unavailability and/or limited access to seeds. Thus, most farmers preferred using their own farm-saved seeds as opposed to purchasing certified seeds. Establishing the distribution and prevalence of PCN and elucidating the local farming practices that could promote the spread of PCN is a necessary precursor to the implementation of any containment or management strategy in the country and ultimately across the region.

To document

Abstract

RapidSCAN is a portable active canopy sensor with red, red-edge, and near infrared spectral bands. The objective of this study is to develop and evaluate a RapidSCAN sensor-based precision nitrogen (N) management (PNM) strategy for high-yielding rice in Northeast China. Six rice N rate experiments were conducted from 2014 to 2016 at Jiansanjiang Experiment Station of China Agricultural University in Northeast China. The results indicated that the sensor performed well for estimating rice yield potential (YP0) and yield response to additional N application (RIHarvest) at the stem elongation stage using normalized difference vegetation index (NDVI) (R2 = 0.60–0.77 and relative error (REr) = 6.2–8.0%) and at the heading stage using normalized difference red edge (NDRE) (R2 = 0.70–0.82 and REr = 7.3–8.7%). A new RapidSCAN sensor-based PNM strategy was developed that would make N recommendations at both stem elongation and heading growth stages, in contrast to previously developed strategy making N recommendation only at the stem elongation stage. This new PNM strategy could save 24% N fertilizers, and increase N use efficiencies by 29–35% as compared to Farmer N Management, without significantly affecting the rice grain yield and economic returns. Compared with regional optimum N management, the new PNM strategy increased 4% grain yield, 3–10% N use efficiencies and 148 $ ha−1 economic returns across years and varieties. It is concluded that the new RapidSCAN sensor-based PNM strategy with two in-season N recommendations using NDVI and NDRE is suitable for guiding in-season N management in high-yield rice management systems. Future studies are needed to evaluate this RapidSCAN sensor-based PNM strategy under diverse on-farm conditions, as well as to integrate it into high-yield rice management systems for food security and sustainable development.

To document

Abstract

Various studies investigated the fate of evaporation and the origin of precipitation. The more recent studies among them were often carried out with the help of numerical moisture tracking. Many research questions could be answered within this context, such as dependencies of atmospheric moisture transfers between different regions, impacts of land cover changes on the hydrological cycle, sustainability-related questions, and questions regarding the seasonal and interannual variability of precipitation. In order to facilitate future applications, global datasets on the fate of evaporation and the sources of precipitation are needed. Since most studies are on a regional level and focus more on the sources of precipitation, the goal of this study is to provide a readily available global dataset on the fate of evaporation for a fine-meshed grid of source and receptor cells. The dataset was created through a global run of the numerical moisture tracking model Water Accounting Model-2layers (WAM-2layers) and focused on the fate of land evaporation. The tracking was conducted on a 1.5∘×1.5∘ grid and was based on reanalysis data from the ERA-Interim database. Climatic input data were incorporated in 3- to 6-hourly time steps and represent the time period from 2001 to 2018. Atmospheric moisture was tracked forward in time and the geographical borders of the model were located at ±79.5∘ latitude. As a result of the model run, the annual, the monthly and the interannual average fate of evaporation were determined for 8684 land grid cells (all land cells except those located within Greenland and Antarctica) and provided via source–receptor matrices. The gained dataset was complemented via an aggregation to country and basin scales in order to highlight possible usages for areas of interest larger than grid cells. This resulted in data for 265 countries and 8223 basins. Finally, five types of source–receptor matrices for average moisture transfers were chosen to build the core of the dataset: land grid cell to grid cell, country to grid cell, basin to grid cell, country to country, basin to basin. The dataset is, to our knowledge, the first ready-to-download dataset providing the overall fate of evaporation for land cells of a global fine-meshed grid in monthly resolution. At the same time, information on the sources of precipitation can be extracted from it. It could be used for investigations into average annual, seasonal, and interannual sink and source regions of atmospheric moisture from land masses for most of the regions in the world and shows various application possibilities for studying interactions between people and water, such as land cover changes or human water consumption patterns. The dataset is accessible under https://doi.org/10.1594/PANGAEA.908705 (Link et al., 2019a) and comes along with example scripts for reading and plotting the data.

To document

Abstract

Payment tariffs for logging truck transport in Nordic countries are typically based on the loaded transport distance. Local tariffs often provide a good representation of the mean cost, however, as variation in topography and the transport environment increases; loaded distance alone represents the actual cost poorly. In addition, routes with increasing curvature also constitute more frequent braking and acceleration cycles. Moreover, driving in such topographical environments during the winter raises additional safety and operator stress issues. This study examines the situation in Norway where logging truck routes often start in mountainous regions. It tests the applicability of a route-generation system developed in Sweden and determines if it can be adopted in Norway. The case study is based on 30 detailed routes from each country, reported and analyzed by their respective transport managers. Based on typical local tariffs, the results show the route-specific variation in costs and profit margins associated with the varying transport environments. A framework for classifying transport environments is proposed as a basis for tariff agreements that better represent the actual transport cost. This increases fairness and supports economic sustainability for transporters. Study Implications: The proposed route-specific cost computation approach can be used by managers to develop more equitable tariff systems between transporters and transport service buyers. In addition, it can be used to provide route selections that are more easily handled in fully automated systems. This has been done in Sweden and has now been tested in Norway. This provides a first step for other countries and regions to follow suit. Lastly, the proposed approach enables a more equitable service payment for all parties, providing transporters with a better balance between revenues and costs.

To document

Abstract

Plants evolved in close contact with a myriad of microorganisms, some of which formed associations with their roots, benefitting from carbohydrates and other plant resources. In exchange, they evolved to influence important plant functions, e.g. defense against insect herbivores and other antagonists. Here, we test whether a fungus, Metarhizium brunneum, which is mostly known as an insect pathogen, can also associate with plant roots and contribute to above-ground plant defense. Cauliflower (Brassica oleracea var. botrytis) seeds were sown together with M. brunneum-inoculated rice grains, and the resulting plants subjected to leaf herbivory by the specialist Plutella xylostella. Activity of myrosinases, the enzymes activating glucosinolates, was measured before and after herbivory; larval consumption and plant weight at the end of experiments. Metarhizium brunneum clearly established in the plant roots, and after herbivory myrosinase activity was substantially higher in M. brunneum-treated plants than in controls; before herbivory, M. brunneum-treated and control plants did not differ. Leaf consumption was slightly lower in the M. brunneum-treated plants whereas total biomass and allocation to above- or below-ground parts was not affected by the Metarhizium treatment. Thus, M. brunneum associates with roots and primes the plant for a stronger or faster increase in myrosinase activity upon herbivory. Consistent with this, myrosinase function has been suggested to be rate-limiting for induction of the glucosinolate-myrosinase defense system. Our results show that M. brunneum, in addition to being an insect pathogen, can associate with plant roots and prime plant defense.

To document

Abstract

Swedish legislation stipulates the precision required for estimates of parameters used to determine the value of various forest fuels. The net energy value of fuel, as it is received, is often used to set the trade price. The estimate of energy content is based on the moisture content of samples taken from each truckload and the weight of the biomass; the ash content and net calorific value are measured a few times each year. Hence, it is necessary to know the variation in moisture content to ensure that a sufficient number of samples are taken, a number based on the allowed variation and precision of estimates, as defined in the legalization. In this study, the variation in moisture content was measured by taking samples from 18 truckloads of comminuted forest fuels during the winter. The results showed that the current sampling regime, i.e., manually taking four samples from each truckload, is sufficient for deliveries with 10 truckloads for logging residue chips and 4 for stem wood chips. The number of samples should be increased to 12–43, 8–21, and, 17–82 depending on assortment for what the measuring act defines as large deliveries (>=50 tonnes; >=3 truckloads), medium-sized deliveries (<50 – >25 tonnes; 2 truckloads) and single truck deliveries (<= 25 tonnes; 1 truckload), respectively. Current research into fast online sampling and analysis methods could resolve this issue for small deliveries.

To document

Abstract

A study on the influence of planting distances on the growth, productivity and fruit quality of dwarf apple trees in a 15- to 18-year-old orchard was carried out at the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry. Trees of the apple (Malus × domestica Borkh) cultivar ‘Auksis’ on rootstock P 60 were planted at distances of 3 × 1.5, 3 × 1.25, 3 × 1.00 m and 3 × 0.75 m. With increasing density of fruit trees, single-tree growth, generative development and yield were significantly reduced. The opposite results were obtained when these parameters were evaluated per unit area. Yield and fruit quality measurements were made at two canopy heights: 0–1.5 and 1.5–2.5 m. In the upper part of the fruit tree canopy, fruit average weight and diameter were higher, while the colour was more intense and less dependent on the planting density of fruit trees. In the lower part of the canopy, fruit quality was inferior and with increasing fruit tree density it further deteriorated. Planting distances had a significant effect on the accumulation of sugar, soluble solids and dry matter content: greater planting distances resulted in increased sugar content from 10.97% to 11.90%, soluble solids – from 12.30% to 13.17% and dry matter content – from 13.80% to 14.80%. Conversely, higher accumulation of phenolic and triterpenic compounds in apple fruits was found with decreasing planting distances. A significant increase of phenolic compounds from 2.91 up to 4.03 mg g-1 DW (dry weight) was recorded at the upper part of the canopy, while an increase of triterpens from 12.9 up to 16.07 mg g-1 DW – at the lower part of the canopy. The best productivity and fruit quality of ‘Auksis’ apple trees on P 60 rootstock at the full bearing stage were obtained, when fruit trees had been spaced at 3 × 1.25 m. Key words: fruit biochemical composition, fruit colour, Malus × domestica, planting system.

To document

Abstract

Scenarios describe plausible and internally consistent views of the future. They can be used by scientists, policymakers and entrepreneurs to explore the challenges of global environmental change given an appropriate level of spatial and sectoral detail and systematic development. We followed a nine-step protocol to extend and enrich a set of global scenarios – the Shared Socio-economic Pathways (SSPs) – providing regional and sectoral detail for European agriculture and food systems using a one-to-one nesting participatory approach. The resulting five Eur-Agri-SSPs are titled (1) Agriculture on sustainable paths, (2) Agriculture on established paths, (3) Agriculture on separated paths, (4) Agriculture on unequal paths, and (5) Agriculture on high-tech paths. They describe alternative plausible qualitative evolutions of multiple drivers of particular importance and high uncertainty for European agriculture and food systems. The added value of the protocol-based storyline development process lies in the conceptual and methodological transparency and rigor; the stakeholder driven selection of the storyline elements; and consistency checks within and between the storylines. Compared to the global SSPs, the five Eur-Agri-SSPs provide rich thematic and regional details and are thus a solid basis for integrated assessments of agriculture and food systems and their response to future socio-economic and environmental changes.

Abstract

The final chapter in the book summarizes the main messages from the preceding chapters. It analyses the diverse views of the bioeconomy concept and supports the view that sustainable bioeconomy development has the potential to change the way we produce and consume natural resources while reducing the negative impacts on the environment. However, there are always risks associated with any new paradigm, hence, it is necessary to ensure transparency in the process, consider the interests of the most vulnerable groups and introduce genuine stakeholder management from the start. Whether, and to what extent, bioeconomy can contribute to the SDGs is a debatable issue. However, several case studies in the book do support the idea that bioeconomy can help in achieving several SDGs. The chapter also highlights the importance of sustainability indicators, including ecological (i.e., the local ecological footprint, total organic carbon, soil nitrogen, transport of minerals from land to rivers and oceans and other ecosystem services), economic and social sustainability indices in the context of bioeconomy development. Their measurement and monitoring are essential to ensure that we are on the sustainable development path. The chapter suggests possible measures to overcome constraints or risks associated with bioeconomy and proposes the necessary conditions required for sustainable bioeconomy development.

Abstract

This chapter highlights the challenges in the agriculture sector in Africa and shows that the current systems are not productive, but are linear, dependent on fossil fuels, and even depleting natural resources. The chapter reviews the potential of sustainable intensification of agriculture with an emphasis on diversified cropping systems and value chain enhancement as an option to promote the bio-based economy in the rural regions of Africa. The chapter uses data and experiences from an ongoing programme in Malawi (www.innovafrica.eu), where maize-legume cropping systems were adopted by smallholders. There is great potential to apply the 3Rs principle of the bio-based economy (i.e., reduce, reuse and recycle) in the farming systems at the production, post-production, marketing and processing stages of the value chain. To sum up, the sustainable intensification approach, inclusive of value chain development, appears to be a promising option for smallholders in Sub-Saharan Africa, which can improve productivity, increase farmers’ income, encourage gender mainstreaming and at the same time reduce environmental impacts.

To document

Abstract

Fungal plant diseases driven by weather factors are common in European wheat and barley crops. Among these, septoria tritici blotch (Zymoseptoria tritici), tan spot (Pyrenophora tritici-repentis), and stagonospora nodorum blotch (Parastagonospora nodorum) are common in the Nordic-Baltic region at variable incidence and severity both in spring and winter wheat fields. In spring barley, net blotch (Pyrenophora teres), scald (Rhynchosporium graminicola, syn. Rhynchosporium commune) and ramularia leaf spot (Ramularia collo-cygni) are common yield limiting foliar diseases. We analysed data from 449 field trials from 2007 to 2017 in wheat and barley crops in the Nordic-Baltic region and explored the differences in severity of leaf blotch diseases between countries and years, and the impact of the diseases on yield. In the experiments, septoria tritici blotch dominated in winter wheat in Denmark and southern Sweden; while in Lithuania, both septoria tritici blotch and tan spot were common. In spring wheat, stagonospora nodorum blotch dominated in Norway and tan spot in Finland. Net blotch and ramularia leaf blotch were the most severe barley diseases over large areas, while scald occurred more locally and had less yield impact in all countries. Leaf blotch diseases, with severity >50% at DC 73–77, caused an average yield loss of 1072 kg/ha in winter wheat and 1114 kg/ha in spring barley across all countries over 5 years. These data verify a large regional and yearly variation in disease severity, distribution and impact on yield, emphasizing the need to adapt fungicide applications to the actual need based on locally adapted risk assessment systems.

Abstract

A new stand-level growth and yield model, consisting of component equations for stand volume, basal area, survival, and dominant stand height, was developed from a dataset of long-term trials for managed thinned and unthinned even-aged Norway spruce (Picea abies (L.) Karst.) forests in Norway. The developed models predict considerably faster growth rates than the existing Norwegian models. Further, it was found that the existing Norwegian stand-level models do not match the data from the thinning trails. The significance of thinning response functions indicated that thinning increases basal area growth while reducing competition related mortality. No significant effects of thinning were found in the dominant stand height growth. Model examination by means of cross-validation indicated that the models were unbiased and performed well within the data range. An application of the developed stand-level model highlights the potential use for these models in comparing different management scenarios.

Abstract

Planning sustainable use of land resources and environmental monitoring benefit from accurate and detailed forest information. The basis of accurate forest information is data on the spatial extent of forests. In Norway land resource maps have been carefully created by field visits and aerial image interpretation for over four decades with periodic updating. However, due to prioritization of agricultural and built-up areas, and high requirements with respect to the map accuracy, forest areas and outfields have not been frequently updated. Consequently, in some part of the country, the map has not been updated since its first creation in the 1960s. The Sentinel-2 satellite acquires images with high spatial and temporal resolution which provides opportunities for creating cloud-free mosaic images over areas that are often covered with clouds. Here, we combine object-based image analysis with machine learning methods in an automated framework to map forest area in Sentinel-2 mosaic images. The images are segmented using the eCogntionTM software. Training data are collected automatically from the existing land resource map and filtered using height and greenness information so that the training samples certainly represent their respective classes. Two machine learning algorithms, namely Random Forest (RF) and the Multilayer Perceptron Neural Network (MLP), are then trained and validated before mapping forest area. The effects of including and excluding some features on the classification accuracy is investigated. The results show that the method produces forest cover map at very high accuracy (up to 97%). The MLP performs better than the RF algorithm both in classification accuracy and in robustness against inclusion and exclusion of features.

To document

Abstract

Norwegian pear production is low due to climatic limitations, a lack of well-adapted cultivars and suitable pollinizers. However, nowadays it is increasing as a result of newly introduced and bred pear cultivars. Since cross pollination is necessary for high yields and good fruit quality, the aim of this investigation was to find the most suitable pollinizers for the pear cultivars “Ingeborg” (“Conference” × “Bonne Louise”) and “Celina” (“Colorée de Juillet” × “Williams”). Self-pollination of “Ingeborg” and “Celina”, together with “Conference”, “Belle Lucrative”, “Anna”, “Clara Frijs”, “Herzogin Elsa”, “Kristina” and “Fritjof” as potential pollinizers, were studied in this experiment during the 2017 and 2018 seasons in Norway. The success rate of each pollinizer was tested under field conditions, while the monitoring of pollen tube growth was done using the fluorescence microscopy method. All reproductive parameters (pollen germination, number of pollen tubes in the upper part of the style, pollen tube number in the locule of the ovary, number of fertilized ovules, initial fruit set, and final fruit set) in all crossing combinations were higher in 2018 due to much warmer weather. Based on the flowering overlap and success rate of each individual pollinizer and fruit set, the cultivars “Anna” and “Clara Frijs” can be suggested as pollinizers for the cultivar “Ingeborg”, while “Fritjof”, “Anna”, “Kristina” and “Herzogin Elsa” for the cultivar “Celina”. An even distribution of two compatible pollinizers having overlapping flowering times with the main commercial pear cultivar is a general recommendation for commercial pear production.

Abstract

Fekalkildesporing er en teknikk som gir informasjon om hvilken dyregruppe bakterier fra avføring stammer fra. NIBIO har nylig utviklet en metode som angir hvilken andel bakterier som stammer fra fem grupper: fire spesifikke dyregrupper (inkludert mennesker) og en femte gruppe som dekker øvrige dyrearter. Metoden gjør det mulig å skille utslipp fra kommunalt nett (mennesker) fra andre kilder (f.eks dyrehold eller vilt). Denne artikkelen beskriver bruk av metoden langs Nitelva på strekningen gjennom gamle Skedsmo kommune (nå Lillestrøm). De høye konsentrasjonene av Escherichia coli (E. coli) som ble målt på våren (mai 2019) definerer fekal vannforurensing som skyldes dyr (mest sannsynlig vannfugler) og ikke mennesker.

Abstract

During June 2019, an outbreak of campylobacteriosis occurred in Askøy, an island northwest of Bergen, Norway. According to the publicly available records, over 2000 residents fell ill and 76 were hospitalised, and two deaths were suspected to be associated with Campylobacter infection. By investigating the epidemic pattern and scope, an old caved drinking water holding pool was identified that had been faecally contaminated as indicated by the presence of Escherichia coli (E. coli). Furthermore, Campylobacter bacteria were found at several points in the water distribution system. In the escalated water health crisis, tracking down the infectious source became pivotal for the local municipality in order to take prompt and appropriate action to control the epidemic. A major task was to identify the primary faecal pollution source, which could further assist in tracking down the epidemic origin. Water from the affected pool was analysed using quantitative microbial source tracking (QMST) applying host-specific Bacteroidales 16S rRNA genetic markers. In addition, Campylobacter jejuni, Enterococcus faecalis, Clostridium perfringens and Shiga toxin-producing E. coli were detected. The QMST outcomes revealed that non-human (zoogenic) sources accounted predominantly for faecal pollution. More precisely, 69% of the faecal water contamination originated from horses.

Abstract

Key words: Ursus maritimus, CITES, polar bear, Non-Detriment Finding, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, VKM Background: Canada is the only nation in the world that allows commercial export of polar bear products harvested from its own wild populations. Norway is among the destinations for exported material. Polar bears are listed on CITES appendix II and on list B of the Norwegian CITES Regulation. Import of harvested polar bears to Norway requires both export permits from the Canadian CITES authorities and import permits from the Norwegian Environment Agency. Consequently, a Non-Detriment Finding (NDF) is mandated and was commissioned by the Norwegian Environment Agency (Norwegian Management Authority for CITES) to the Norwegian Scientific Committee for Food and Environment (VKM) (Norway’s CITES Scientific Authority). The NDF is a scientific risk assessment evaluating whether or not international trade can be detrimental to the survival of polar bears. The risk assessment may also be used by the Norwegian Environment Agency to assess whether the polar bears should be placed on Norwegian CITES list A. Currently, the IUCN/SSC Polar Bear Specialist Group (PBSG) recognizes 19 subpopulations of polar bears in the circumpolar Arctic, of which 13 reside wholly (9) or partly (4) in Canada. Together, these 13 populations account for about two thirds of the world’s total polar bear population. This risk assessment considers the populations that are within the hunting areas. Methods: VKM has reviewed current knowledge about polar bear biological characteristics, population status and trends in subpopulations. Scenarios for the future development of the Arctic environment, to which the species is inextricably adapted, are presented. Habitat loss due to declining sea ice is widely recognized as the main threat to polar bears, and this, as well as other obstacles to the species survival, has been evaluated. The various legislations, regulations and monitoring regimes of the range countries are briefly summarised. Moreover, international trade in polar bear products has been analysed. VKM has further undertaken an assessment of data quality and uncertainties. In order to gain access to the most recent information on polar bear biology and management, four scientists from the PBSG were interviewed and the transcripts of the interviews (with consent from the hearing experts) are attached to this report. Results: The best scientific knowledge available for polar bears in Canada suggests that four subpopulations are in decline, two are stable, and one is increasing, while the population trends for the remaining subpopulations are unknown. Noteworthy, all the estimates of population size are highly uncertain. Survey methods also changed between the 2008 and 2018 population estimates used for quota setting. Moreover, data are in most areas collected too infrequently to detect rapid changes in population size. Particularly, under changing environmental conditions. The prognosis for the Arctic marine environment points towards continuing habitat loss and inevitably further decline for the polar bear population. Analyses of data from the CITES trade database reveal a dynamic international market for polar bear products with significant changes in destination countries and the purpose for transactions. The United States was the main importer of polar bear products, mainly hunting trophies, until listing the polar bear as a threatened species in 2008. In more recent years, China has become the major importer, with hides being the preferred product. Simultaneously with these changes, there has been a significant increase in the price of polar bear hides. Conclusion: Several polar bear subpopulations are in decline. Predictions of continuing habitat loss points to further decline. While not the main threat to polar bear survival, international trade .......

To document

Abstract

Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, Norwegian Food Safety Authority Introduction: The Norwegian Environment Agency and the Norwegian Food Safety Authority asked the Norwegian Scientific Committee for Food and Environment to assess the risk to Norwegian biodiversity, to the productivity of native salmonid populations, and to aquaculture, from the spread and establishment of pink salmon in Norwegian rivers, and to assess mitigation measures to prevent the spread and establishment of this alien species. Pink salmon is native to rivers around the northern Pacific Ocean. The species usually has a strict two-year life cycle, with populations spawning in even and odd years being genetically isolated. Fertilized eggs of pink salmon were transferred from Sakhalin Island to Northwest Russia in the late 1950s, and fry were released in rivers draining to the White Sea. The first abundant return to rivers in Northwest Russia, as well as to Norway and other countries in northwestern Europe, was recorded in 1960. Stocking with fish from Sakhalin was terminated in 1979. By then, no self-sustaining populations had been established. From 1985 onwards, stocking in White Sea rivers was resumed with fish from rivers in the more northerly Magadan oblast on the Russian Pacific, resulting in the establishment of reproducing populations. Stocking was continued until 1999, when the last batch of evenyear fertilized eggs was imported, and the fry released in spring 2000. Thus, all pink salmon caught after 2001 in the Northeast Atlantic and the Atlantic side of the Arctic Ocean including the Barents Sea, as well as in rivers draining into these seas, are the result of reproduction in the wild. Pink salmon is now established with abundant and increasing stocks in Northwest Russia and regular occurrence in rivers in eastern Finnmark. Catches of odd-year adult pink salmon in Northwest Russia were usually below 100 tonnes before 2001 and increased to an annual average of 220.5 tonnes during the period 2001-2017. Even-year returns are smaller than odd-year returns both in Northwest Russia and in Norway. The number of pink salmon recorded in Norwegian rivers peaked in 2017, with a high number of fish in eastern Finnmark, and substantial numbers recorded in rivers all along the coast of Norway and in other European countries. In 2019, the area with abundant returns expanded in comparison with 2017, to include rivers in western Finnmark and Troms. The recorded numbers were perhaps lower in southern Norway in 2017 than in 2019 (full statistics not available when this report was finalised), but also in southern Norway there were more pink salmon in 2019 than in any year before 2017. The large numbers of pink salmon in western Finnmark and Troms in 2019 may indicate an expansion of the area in Norway with abundant odd-year pink salmon returns. In some small rivers in eastern Finnmark, between 1000 and 1500 pink salmon were fished out by local people in 2019, demonstrating the magnitude of the potential impact in terms of numbers of pink salmon. We cannot rule out that this will not happen over larger parts of Norway in the coming years. The even-year strain of pink salmon only occurs in low numbers in Russian rivers, as well as Norwegian, rivers. Adult pink salmon enter the rivers from early July, and spawning occurs in AugustSeptember. Spawning habitat requirements are like those of native salmonids: Atlantic salmon, brown trout, and Arctic charr. Spawning of pink salmon occurs earlier than the native salmonids, but observations in 2019 indicate a possible overlap with native salmonids in September in northern Norway. . Pink salmon eggs hatch in late winter or spring, and the alevins remain in the gravel until most of the yolk sac has been resorbed. Emerging fry are approximately 30 mm in length. ...................

To document

Abstract

The fungus Parastagonospora nodorum is a narrow host range necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) of cereals, most notably wheat. Although commonly observed on wheat seedlings, P. nodorum infection has the greatest effect on the adult crop. It results in leaf blotch, which limits photosynthesis and thus crop growth and yield. It can also affect the wheat ear, resulting in glume blotch which directly affects grain quality. Reports of P. nodorum fungicide resistance, the increasing use of reduced tillage agronomic practices and high evolutionary potential of the pathogen, combined with changes in climate and agricultural environments, mean that genetic resistance to SNB remains a high priority in many regions of wheat cultivation. In this review, we summarise current information on P. nodorum population structure and its implication for improved SNB management. We then review recent advances in the genetics of host resistance to P. nodorum and the necrotrophic effectors it secretes during infection, integrating the genomic positions of these genetic loci using the recently released wheat reference genome assembly. Finally, we discuss the genetic and genomic tools now available for SNB resistance breeding and consider future opportunities and challenges in crop health management using the wheat-P. nodorum interaction as a model.

To document

Abstract

In the future, the world is expected to rely increasingly on renewable biomass resources for food, fodder, fibre and fuel. The sustainability of this transition to bioeconomy for our water systems depends to a large extent on how we manage our land resources. Changes in land use together with climate change will affect water quantity and quality, which again will have implications for the ecosystem services provided by water resources. These are the main topics of this Ambio special issue on ‘‘Environmental effects of a green bio-economy’’. This paper offers a summary of the eleven papers included in this issue and, at the same time, outlines an approach to quantify and mitigate the impacts of bioeconomy on water resources and their ecosystem services, with indications of useful tools and knowledge needs.

To document

Abstract

High-throughput sequencing has emerged as the favoured method to study microRNA (miRNA) expression, but biases introduced during library preparation have been reported. We recently compared the performance (sensitivity, reliability, titration response and differential expression) of six commercially-available kits on synthetic miRNAs and human RNA, where library preparation was performed by the vendors. We hereby supplement this study with data from two further commonly used kits (NEBNext, NEXTflex) whose manufacturers initially declined to participate. NEXTflex demonstrated the highest sensitivity, which may reflect its use of partially-randomized adapter sequences, but overall performance was lower than the QIAseq and TailorMix kits. NEBNext showed intermediate performance. We reaffirm that biases are kit specific, complicating the comparison of miRNA datasets generated using different kits.

To document

Abstract

Despite major efforts to combat pollution, the presence of pathogenic bacteria is still detected in surface water, soil and even crops due to poor purification of domestic and industrial wastewaters. Therefore, we have designed molecularly imprinted polymer films and quaternary ammonium-functionalized- kaolin microparticles to target specifically Gram-negative bacteria (GNB) and Gram-positive bacteria (GPB) in wastewaters and ensure a higher purification rate by working in tandem. According to the bacteriological indicators, a reduction by 90 % was registered for GNB (total coliforms and Escherichia coli O157) and by 77 % for GPB (Clostridium perfringens) in wastewaters. The reduction rates were confirmed when using pathogen genetic markers to quantify particular types of GNB and GPB, like Salmonella typhimurium (reduction up to 100 %),Campylobacter jejuni (reduction up to 70 %), Enterococcus faecalis (reduction up to 81 %), Clostridium perfringens (reduction up to 97 %) and Shiga toxin-producing Escherichia coli (reduction up to 64 %). In order to understand the bactericidal activity of prepared films and microparticles, we have performed several key analyses such as Cryo-TEM, to highlight the auto-assembly mechanism of components during the films formation, and 29 Si/13 C CP/MAS NMR, to reveal the way quaternary ammonium groups are grafted on the surface of kaolin microparticles.

To document

Abstract

Introduction. Following on from work on the European bryophyte Red List, the taxonomically and nomenclaturally updated spreadsheets used for that project have been expanded into a new checklist for the bryophytes of Europe. Methods. A steering group of ten European bryologists was convened, and over the course of a year, the spreadsheets were compared with previous European checklists, and all changes noted. Recent literature was searched extensively. A taxonomic system was agreed, and the advice and expertise of many European bryologists sought. Key results. A new European checklist of bryophytes, comprising hornworts, liverworts and mosses, is presented. Fifteen new combinations are proposed. Conclusions. This checklist provides a snapshot of the current European bryophyte flora in 2019. It will already be out-of-date on publication, and further research, particularly molecular work, can be expected to result in many more changes over the next few years.

To document

Abstract

By 2050, global food consumption is expected to rise by 60% compared to the 2005–2007 level. In sub-Saharan Africa (SSA), the population increase may be as much as 250% by the same period. Hence, there is an urgent need to increase food production and introduce productivity-enhancing measures in SSA agriculture, including the livestock sector, which is the main focus of this article. The current productivity of the Tanzanian livestock sector is low due to seasonal variations in the availability and quality of pasture and other feeds. The cattle gain weight during the rainy season and lose weight in the subsequent dry season. Additionally, pastoralists face challenges due to the conversion of grazing areas into cropland, overgrazing, and the increasingly frequent droughts. Although the optimum age for slaughter is 3.5–4.5 years, farmers in Tanzania slaughter their cows at 5–6 years. This article argues that this may be an unhelpful economical management practice. To study the effects of improved feeding on economic performance, we collected data on on-farm supplementation experiments with indigenous Zebu cattle, in collaboration with pastoral communities and a large-scale commercial wheat farm in Hanang, Tanzania. The study compared the income and costs associated with traditional cattle keeping (TS) for 6 years at slaughter, with that of two levels of concentrate supplementation, low (LSS) and medium (MSS), allowing for slaughtering at 4.5 and 3.5 years, respectively. Adjusted net margins for the three systems were 199, 911 and 978 USD, respectively. Our results strongly suggest that farmers should supplement the feeding of their young stock regularly, in times when the animals cannot sustain themselves on grazing alone. The primary explanations for the recommendation were that supplementation would lead to increased production of meat and reduced variable costs, that is, feeds and drugs. Our study was limited to steers. Future studies should include supplementation of cows to obtain annual calving and use of crop by-products instead of concentrates.

To document

Abstract

The request from NFSA and NEA: Antimicrobial agents and microorganisms are introduced to sewage systems by different human activities, from private homes, institutions such as schools and hospitals, office buildings, industrial and commercial activities, i.e., from everywhere where people work and live. The Norwegian Food Safety Authority (NFSA) and Norwegian Environment Agency (NEA) asked the Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) for an extension of the 2009 VKM report “Risk assessment of contaminants in sewage sludge applied on Norwegian soils” regarding the impact of wastewater (WW)- and sewage sludge treatment methods used in Norway, on the fate and survival of antimicrobial resistant bacteria, fate of antimicrobial resistance genes, and main drivers for resistance (e.g. antibiotics, antifungal agents, heavy metals, disinfectants). The request addressed by VKM: VKM appointed a working group, consisting of three members of the Panel on Microbial Ecology, four external members and VKM staff to prepare a draft Opinion document. The Panel on Microbial Ecology has reviewed and revised the draft prepared by the working group and approved the Opinion document “Assessment of the impact of wastewater and sewage sludge treatment methods on antimicrobial resistance”. The antimicrobial resistance cycle: Exposure to antimicrobial agents is regarded as the most important driver for development and dissemination of AMR in microorganisms. Consequently, an important location for the development of AMR is the gut of humans or animals receiving antimicrobial drug therapy. As ARB, ARG, resistance genes and antimicrobial agents will end up in the WW system, this system could be regarded as a potential hot spot for interactions between different microorganisms, between different antimicrobial agents, and between microorganisms and antimicrobial agents. Hospitals and pharmaceutical companies are regarded as being an important source for antimicrobial drug residues released in WW. At the wastewater treatment plant (WWTP), bacteria and genes end up either in the effluent wastewater fraction or in the sludge fraction. When ARB and ARG are distributed with the WW sludge, they may reach arable land when the sludge is used as soil improver and fertilising product, and thus be recycled into the food-production chain. When following the effluent WW fraction, ARB and ARB will be released into WW recipients, such as lakes, rivers or fjords, and may, from these environments, also be recycled into food production. In each step of these cycles, ARB and ARG will be introduced into new environmental compartments to which they must adapt, and to microbial communities with which they must compete for survival and growth. Depending on the bacterial species, these new environmental compartments will be more or less hostile, but they will also provide opportunities for microbial interactions, like dissemination of ARG due to horizontal gene transfer (HGT) within and between bacterial species. Findings: It is challenging to deliver a general assessment of the nature of as well as the probability for direct discharge of ARB and ARG into effluent WW and applied sludge. This is due to the combined complexity of resistance carriers, traits, various sources of variation, and the WW systems. Moreover, there is currently a lack of harmonized methods and protocols to compare studies from different systems. However, there are no strong indications that there is a significant enrichment of ARB in WWTP operated under European conditions, which, on a general level, also applies to the Norwegian situation. Although some studies indicate a slight increase in the fraction of ARB, the absolute reduction in bacterial load during WW treatment (WWT) is significant; removal of between 99 % to 99.9 % of faecal indicator bacteria is generally achieved by secondary .......

To document

Abstract

ANDERcontrol with the predatory mite Amblyseius andersoni as the active organism is sought to be used as a biological control agent in Norway. ANDERcontrol is intended for use against different mites (such as the two-spotted, fruit-tree, and red spider mite, russet mite,cyclamen mite) and in horticultural crops such as fruits, berries, vegetables, and ornamental. VKM’s conclusions are as follows Prevalence, especially if the organism is found naturally in Norway: Amblyseius andersoni has not been observed in Norway. It has been observed, in low numbers, in southern Sweden and has the capability to enter diapause under unfavourable conditions which suggests the potential for establishing under Norwegian conditions. It is however, the view of VKM that it likely lacks the ability to survive and establish in areas with cold winters and chilly summers, as found in most parts of Norway under current climatic conditions. The potential of the organism for establishment and spread under Norwegian conditions specified for use in greenhouses and open field: The thermal preference of A. andersoni restricts its establishment, and the species has not been observed in Norway. The species is capable of entering diapause, but the lack of records, despite targeted surveys, makes it the opinion of VKM that it is unlikely that A. andersoni will be able to establish in outdoor areas in Norway. However, the lack of information on temperature tolerance of the species constitute an uncertainty factor. The risk of spread from greenhouses is low because no wind or vector are likely to carry the mites from the greenhouse to suitable outdoor habitats, and mite populations in greenhouses do not enter the more cold-tolerant diapause. All conclusions are uncertain due to lack of relevant information regarding the species’ climate tolerance. Any ambiguities regarding the taxonomy, which hampers risk assessment: There are no taxonomic challenges related to the assessment of A. andersoni. Assessment of the product and the organism with regard to possible health risk: VKM is unaware of reports where harm to humans by A. andersoni itself, or associated pathogenic organisms have been observed. Mites may however produce allergic reactions in sensitive individuals handling plant material with high numbers of individuals. There is reason to believe that this holds true also for A. andersoni. Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Food Safety Authority, biological control, predatory mite

To document

Abstract

Key words: Psittaciformes, CITES, Appendix I parrots, Status and trade assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, VKM Background: Parrots are one of the most species-rich groups of birds of which the majority inhabits tropical and subtropical forests. Nearly one-third of parrots are threatened with extinction (IUCN categories CR, EN or VU) and more than half of the world’s parrot species are assumed to be decreasing in numbers. Parrots are popular pets on all continents, mainly due to their colourful feathers, their capacity to mimic the human voice, and their tolerance to life in captivity. More than 250 species have been traded internationally. Since the inception of CITES in 1975, trade of about 12 million live wild-sourced parrots has been registered. Currently, 55 parrot species are listed on CITES Appendix I (Norwegian CITES regulation list A) that includes the most endangered among CITES-listed animals and plants. In compliance with CITES, Norway only permits import for commercial purposes of Appendix I listed parrots bred in captivity in operations included in the Secretariat's Register (Resolution Conf. 12.10 (Rev. CoP15). Presently, 9 of the Appendix I parrot species are bred in such facilities. Import of Appendix I species to Norway requires permits both from the exporter’s CITES authority and the Norwegian Environment Agency (Norwegian CITES Management Authority). All legal transactions of CITES Appendix I listed species should be recorded in the UNEP World Conservation Monitoring Centre (UNEP-WCMC) Trade Database. However, discrepancies are common, demonstrating that the trade monitoring is not accurate. Moreover, several studies suggest that regardless of efforts to regulate trade, the global conservation situation for parrots may be worse than estimated by the IUCN species statuses. Even though habitat loss is the main threat to most parrot species, it has been suggested that priority should be given to conservation actions aimed at reducing the illegal capture of wild parrots for the pet trade. As Norway’s CITES Scientific Authority, the Norwegian Scientific Committee for Food and Environment (VKM) was assigned by the Norwegian Environment Agency to assess the status of populations and trade for Appendix I parrot species. Methods: As different trade patterns are typical for different geographic regions, the species were initially divided into three groups: Africa, Australasia and Central and South America. For species with commercial trade registered in the UNEP-WCMC trade database after year 2010 a full assessment was made. In addition, two species for which negative impact from illegal trade is suspected were also fully assessed. The assessments are based on the Norwegian Cites Regulation and Article III of the Convention and Resolution 16.7(Rev.CoP17). Information on the parrot species assessed in this report were gathered from the text accounts published by BirdLife International and Birds of the World as well as literature cited in the text. Results: VKM undertook full assessments of the population status and trade for 26 of the 55 CITES Appendix I species. The species assessments are presented as fact sheets. They each contain a brief summary of the species’ biology (name, taxonomy, distribution, life history, habitat and role in ecosystem), populations and trends, threats and conservation status, population surveillance and regulations, evaluation of legal/illegal trapping and trade, overall assessment of data quality and references. We found that the quantity, as well as quality, of the information available for the Appendix I parrot species varied much. This was the case for data on general biology, population size and trends and levels of illegal trade. For all of the 23 of species for which commercial trade was registered since 2010 in the UNEP-WCMC trade database discrepancies ........

Abstract

Pythium species are ubiquitous organisms known to be pathogens to terrestrial plants and marine algae. While several Pythium species (hereafter, Pythium) are described as pathogens to marine red algae, little is known about the pathogenicity of Pythium on marine green algae. A strain of a Pythium was isolated from a taxonomically unresolved filamentous Ulva collected in an intertidal area of Oslo fjord. Its pathogenicity to a euryhaline Ulva intestinalis collected in the same area was subsequently tested under salinities of 0, 15, and 30 parts per thousand (ppt). The Pythium isolate readily infected U. intestinalis and decimated the filaments at 0 ppt. Mycelium survived on U. intestinalis filaments for at least 2 weeks at 15 and 30 ppt, but the infection did not progress. Sporulation was not observed in the infected algal filaments at any salinity. Conversely, Pythium sporulated on infected grass pieces at 0, 15, and 30 ppt. High salinity retarded sporulation, but did not prevent it. Our Pythium isolate produced filamentous non-inflated sporangia. The sexual stage was never observed and phylogenetic analysis using internal transcribed spacer suggest this isolate belongs to the clade B2. We conclude that the Pythium found in the Oslo fjord was a pathogen of U. intestinalis under low salinity.

To document

Abstract

It is widely accepted that climate change will affect sugarcane production and its associated pests. The aim of this chapter is to review the impact of climate variability on factors and processes affecting environmental exposure of pesticides used in sugarcane production in Malawi. We indicate that changes in temperature and rainfall will have a dual effect on pesticide risk. Temperatures higher than 30–35 °C affect pesticide toxicity, though effects will vary with pesticide-pest combination. Rapid degradation of pesticides such as acetamiprid and atrazine is expected at temperatures above 30 °C. Higher temperature may increase the incidence and severity of pests such as red spider mites, prompting farmers to use more pesticides. On the other hand, the amount and timing of rainfall in relation to pesticide application are important determinants on the amount of pesticide residue remaining in the environment. There is a higher likelihood of pesticide transport to surface (through runoff) and percolating to groundwater at higher rainfall intensity. A higher soil water content will result in increased pesticide degradation. There is a need to determine the occurrence of pesticide residue in sugarcane cropping and aquatic systems surrounding sugarcane plantations. We highly recommend building capacity in this sector, particularly in biological control of pest species using microbial agents such as insect pathogenic fungi pathogens.

To document

Abstract

Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, mycorrhiza. Mycorrhiza is a beneficial association between plant roots and fungi. This mutualistic symbiosis is essential for plant growth in most natural terrestrial ecosystems and in agriculture. Commercial mycorrhizal products containing fungi and bacteria may promote plant growth, especially on sites without a natural microbial community. Due to the risk of unintended negative effects, introduction of new species or genetically different isolates of native species should always be considered carefully. This report assesses the risk of establishment and spread of six fungal species and six bacterial species included in different commercial mycorrhizal products, as well as the species’ potential impact on Norwegian biodiversity. Most of the evaluated fungi and bacteria are probably present in Norway, even though presence at present data only exist for two of the six fungal species. Establishment of the assessed fungi on the plants and sites where they are applied is considered moderately likely, with medium uncertainty, while establishment of the bacterial species is considered to range from very unlikely to very likely depending on the bacterial group, with low uncertainty. The probability of spread to the wider environment ranges from unlikely (four fungal species), to moderately likely (two fungal species), to very likely (five of the six bacterial species). However, for all species it is considered unlikely that establishment and spread would have negative effects on other native species, habitats and ecosystems in Norway.

To document

Abstract

The product Limonica, with the predatory mite Amblydromalus limonicus as the active organism, is sought to be used as a biological control agent in Norway. Limonica is intended for use against western flower thrips (Frankliniella occidentallis), other thrips (e.g. Thrips tabaci), spider mites and whiteflies (e.g. Trialeurodes, Aleyrodes and Bemisia spp.) in protected horticultural crops such as cucumber, sweet pepper, strawberry and ornamentals. The product is not recommended for greenhouse-grown tomatoes. VKM’s conclusions are as follows Distribution, especially if the organism is found naturally in Norway Amblydromalus limonicus has a very wide natural distribution, being reported from New Zealand, Australia South America, Central America, and North America as well as Hawaii. It has also recently established populations in crop productions and non-crop vegetation in Catalonia, North Eastern Spain. Amblydromalus limonicus have not been observed in Norway. The species seems not to have the capability to enter diapause under unfavourable conditions and it is the view of VKM that it likely lacks the ability to survive and establish in areas with cold winters and chilly summers, as found in most parts of Norway under current climatic conditions. The potential of the organism for establishment and spread under Norwegian conditions specified for use in greenhouses and open field The thermal preference of A. limonicus restricts its establishment, and the species has not been observed outdoors in Norway. As the species is incapable of entering diapause it is the opinion of VKM that it is unlikely that A. limonicus will be able to establish in outdoor areas in Norway. However, the lack of detailed information on temperature tolerance of the species constitutes an uncertainty factor. The risk of spread from greenhouses is low because no wind or vector are likely to carry the mites from the greenhouse to suitable outdoor habitats. However, mites that have escaped from a greenhouses to may spread in the nature. All conclusions are uncertain due to lack of relevant information regarding the species’ climate tolerance. Its origin and current distribution suggest that it cannot survive cold winters. Any ambiguities regarding taxonomy that hamper risk assessment There are no taxonomic challenges related to the assessment of A. limonicus. Assessment of the product and the organism with regard to possible health risks VKM Report 2020: 13 8 VKM is unaware of reports where harm to humans has been observed, whether by A. limonicus itself. Mites may, however, produce allergic reactions in sensitive individuals handling plant material with high numbers of individuals. There is reason to believe that this holds true also for A. limonicus. Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Food Safety Authority, biological control, predatory mite

Abstract

Atheta-System with the rove beetle Atheta coriaria (Kraatz 1856) as the active organism is sought to be used as a biocontrol agent for augmentation biological control in Norway. Atheta-System is intended for use against soil dwelling stages of fungus gnats (e.g. Bradysia paupera), shore flies (Scatella stagnalis), and thrips (e.g. Frankliniella occidentallis) in greenhouses, plastic tunnels, and other closed or controlled climate cultivations of horticultural crops, incl. soft-fruit crops, vegetables, ornamentals, and kitchen herbs. VKM’s conclusions are as follows Distribution, especially if the organism is found naturally in Norway Atheta coriaria is established (naturalized) in Norway since 1919 and has been reported numerous times from Agder in the South to Trøndelag in mid-Norway. The potential of the organism for establishment and spread under Norwegian conditions specified for use in greenhouses and open field The thermal thresholds of A. coriaria are not well-studied, but its current distribution in Southern and mid-Scandinavia shows that it tolerates relatively low winter temperatures, and that the Norwegian summer climate allows for successful reproduction. A. coriaria overwinters in the soil, which provides a relatively sheltered environment. Adults disperse rapidly by flying. All life stages can be vectored by humans – mainly by movement of soil and compost material. Thus, further spread northwards in Norway is predicted irrespective of additional introductions. It is unknown if it can enter diapause under greenhouse conditions. Any ambiguities regarding the taxonomy which hamper risk assessment There are no major taxonomic challenges related to the assessment of A. coriaria. Assessment of the product and the organism with regard to possible health risk VKM is unaware of reports of harm inflicted to humans by A. coriaria itself. Atheta-System comes with the cosmopolitan cheese mite (Tyrophagus putrescentiae), serving as food for A. coriaria. As with most mites, T. putrescentiae may induce allergic reactions in sensitive persons handling the product. Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Food Safety Authority, biological control, rove beetle

Abstract

Land use and climate change can impact water quality in agricultural catchments. The objectives were to assess long-term monitoring data to quantify changes to the thermal growing season length, investigate farmer adaptations to this and examine these and other factors in relation to total nitrogen and nitrate water concentrations. Data (1991–2017) from seven small Norwegian agricultural catchments were analysed using Mann–Kendall Trend Tests, Pearson correlation and a linear mixed model. The growing season length increased significantly in four of seven catchments. In catchments with cereal production, the increased growing season length corresponded to a reduction in nitrogen concentrations, but there was no such relationship in grassland catchments. In one cereal catchment, a significant correlation was found between the start of sowing and start of the thermal growing season. Understanding the role of the growing season and other factors can provide additional insight into processes and land use choices taking place in agricultural catchments.

To document

Abstract

Late-spring frosts (LSFs) affect the performance of plants and animals across the world’s temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees’ adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species’ innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.

To document

Abstract

Integration of technology is commonplace in forestry equipment supporting higher levels of automation and efficiency. For technology adoption to be successful it must demonstrate improvement in productivity, cost–effectiveness or in human factors and ergonomics. Cable yarding lends itself to automation with repetitive machine movement along a fixed corridor, as established by the skyline. This study aimed at investigating the difference in productivity between the two possible settings (manual and automated) of a Valentini V850 yarder equipped with automatic path programming, with a Bergwald 3-t carriage and radio controlled chokers. The study took place in the northern Italian Alpine eastern region over a period of 8 days on two separate corridors, resulting in 280 measured cycles split between manual and automated. Results in terms of absolute numbers were very close for the two system options, but significant differences were found. For example, inhaul time was longer, but outhaul time shorter for the automated system. Productivity ranged from 8.2 to 13.3 m3 PMH-1, and cost from approximately 20 to 30 € m-3. The automated system did achieve a significantly higher productivity, but differences declined with extraction distance. When that was combined with the slightly higher cost for the automated system, the automated system was more cost-effective on extraction distances less than 200 m, and the manual system on longer distances.

To document

Abstract

Paleo-environmental data show that the distribution of African rain forests was affected by Quaternary climate changes. In particular, the Dahomey Gap (DG) – a 200 km wide savanna corridor currently separating the West African and Central African rain forest blocks and containing relict rain forest fragments – was forested during the mid-Holocene and possibly during previous interglacial periods, whereas it was dominated by open vegetation (savanna) during glacial periods. Genetic signatures of past population fragmentation and demographic changes have been found in some African forest plant species using nuclear markers, but such events appear not to have been synchronous or shared across species. To better understand the colonization history of the DG by rain forest trees through seed dispersal, the plastid genomes of two widespread African forest legume trees, Anthonotha macrophylla and Distemonanthus benthamianus, were sequenced in 47 individuals for each species, providing unprecedented phylogenetic resolution of their maternal lineages (857 and 115 SNPs, respectively). Both species exhibit distinct lineages separating three regions: 1. Upper Guinea (UG, i.e. the West African forest block), 2. the area ranging from the DG to the Cameroon volcanic line (CVL), and 3. Lower Guinea (LG, the western part of the Central African forest block) where three lineages co-occur. In both species, the DG populations (including southern Nigeria west of Cross River) exhibit much lower genetic diversity than UG and LG populations, and their plastid lineages originate from the CVL, confirming the role of the CVL as an ancient forest refuge. Despite the similar phylogeographic structures displayed by A. macrophylla and D. benthamianus, molecular dating indicates very contrasting ages of lineage divergence (UG diverged from LG since c. 7 Ma and 0.7 Ma, respectively) and DG colonization (probably following the Mid Pleistocene Transition and the Last Glacial Maximum, respectively). The stability of forest refuge areas and repeated similar forest shrinking/expanding events during successive glacial periods might explain why similar phylogeographic patterns can be generated over contrasting timescales.

Abstract

Nation-wide Sentinel-2 mosaics were used with National Forest Inventory (NFI) plot data for modelling and subsequent mapping of spruce-, pine-, and deciduous-dominated forest in Norway at a 16 m × 16 m resolution. The accuracies of the best model ranged between 74% for spruce and 87% for deciduous forest. An overall accuracy of 90% was found on stand level using independent data from more than 42 000 stands. Errors mostly resulting from a forest mask reduced the model accuracies by ∼10%. The produced map was subsequently used to generate model-assisted (MA) and poststratified (PS) estimates of species-specific forest area. At the national level, efficiencies of the estimates increased by 20% to 50% for MA and up to 90% for PS. Greater minimum numbers of observations constrained the use of PS. For MA estimates of municipalities, efficiencies improved by up to a factor of 8 but were sometimes also less than 1. PS estimates were always equally as or more precise than direct and MA estimates but were applicable in fewer municipalities. The tree species prediction map is part of the Norwegian forest resource map and is used, among others, to improve maps of other variables of interest such as timber volume and biomass.

To document

Abstract

In the last two decades, attention on forests and ownership rights has increased in different domains of international policy, particularly in relation to achieving the global sustainable development goals. This paper looks at the changes in forest-specific legislation applicable to regular productive forests, across 28 European countries. We compare the legal framework applicable in the mid-1990s with that applicable in 2015, using the Property Rights Index in Forestry (PRIF) to measure changes across time and space. The paper shows that forest owners in most western European countries already had high decision-making power in the mid-1990s, following deregulation trends from the 1980s; and for the next two decades, distribution of rights remained largely stable. For these countries, the content and direction of changes indicate that the main pressure on forest-focused legislation comes from environmental discourses (e.g. biodiversity and climate change policies). In contrast, former socialist countries in the mid-1990s gave lower decision-making powers to forest owners than in any of the Western Europe countries; over the next 20 years these show remarkable changes in management, exclusion and withdrawal rights. As a result of these changes, there is no longer a clear line between western and former socialist countries with respect to the national governance systems used to address private forest ownership. Nevertheless, with the exception of Baltic countries which have moved towards the western forest governance system, most of the former socialist countries still maintain a state-centred approach in private forest management. Overall, most of the changes we identified in the last two decades across Europe were recorded in the categories of management rights and exclusion rights. These changes reflect the general trend in European forest policies to expand and reinforce the landowners’ individual rights, while preserving minimal rights for other categories of forest users; and to promote the use of financial instruments when targeting policy goals related to the environmental discourse.

Abstract

Optimizing phosphorus (P) application to agricultural soils is fundamental to crop production and water quality protection. We sought to relate soil P tests and P sorption characteristics to both crop yield response to P application and environmentally critical soil P status. Barley (Hordeum vulgare L.) was grown in pot experiments with 45 soils of different P status. Half the pots were fertilized at 20 kg P ha−1, and half received no P. Soils were extracted with ammonium lactate, sodium bicarbonate (Olsen P), dilute salt (0.0025 M CaCl2), and diffusive gradient in thin films. Soil adsorption coefficients were determined using the Freundlich isotherm equation, and the degree of P saturation was determined from both oxalate and ammonium lactate extracted Fe, Al, and P. All soil P analyses showed a nonlinear and significant relationship with yield response to P application, and all analyses manifested a threshold value above which no P response was observed. For the commonly used ammonium lactate test, inclusion of Al and Fe improved prediction of plant‐available soil P. The threshold for yield response coincided with the environmentally critical values determined from the degree of P saturation. Results support the conclusion that soil P levels for which no P application is needed also have elevated risk of P loss to runoff.

To document

Abstract

I kapittelet redegjør vi for hvordan veterinær grensekontroll er regulert gjennom EØS-avtalen, og hvilke konsekvenser dette har for den norske sjømateksporten. I kapittelet analyseres de videre konsekvensene av måter å regulere veterinær grensekontroll på gjennom alternative tilknytningsformer til EU: 1) Ingen avtale med EU, der EUs tredjelandsbestemmelser gjelder; 2) frihandelsavtale med EU (jf. Færøyene, Chile, Canada); og 3) sektoravtaler med EU innenfor en bred handelspolitisk ramme (jf. Sveits).

Abstract

Forest structural properties largely govern surface fluxes of moisture, energy, and momentum that strongly affect regional climate and hydrology. Forest structural properties are greatly shaped by forest management activities, especially in the Fennoscandia (Norway, Sweden, and Finland). Insight into transient developments in forest structure in response to management intervention is therefore essential to understanding the role of forest management in mitigating regional climate change. The aim of this study is to present a simple grid-based framework – the Fennoscandic Forest State Simulator (F2S2) -- for predicting time-dependent forest structural trajectories in a manner compatible with land models employed in offline or asynchronously coupled climate and hydrological research. F2S2 enables the prescription of future regional forest structure as a function of: i) exogenously defined scenarios of forest harvest intensity; ii) forest management intensity; iii) climate forcing. We demonstrate its application when applied as a stand-alone tool for forecasting three alternative future forest states in Norway that differ with respect to background climate forcing, forest harvest intensity (linked to two Shared Socio-economic Pathways (SSPs)), and forest management intensity. F2S2 captures impacts of climate forcing and forest management on general trends in forest structural development over time, and while climate is the main driver of longer-term forest structural dynamics, the role of harvests and other management-driven effects cannot be overlooked. To our knowledge this is the first paper presenting a method to map forest structure in space and time in a way that is compatible with land surface or hydrological models employing sub-grid tiling.

Abstract

Regjeringens bioøkonomistrategi, Kjente ressurser – uante muligheter, fra 2016, fremhever at den fremtidige bioøkonomien må være bærekraftig. Når en større del av våre behov skal dekkes med utgangspunkt i fornybare biologiske res¬surser, vil vi måtte høste mer av disse ressursene – selv om det også er et mål å utnytte ressursene bedre. Disse ressursene skal imidlertid høstes på det samme landarealet som utgjør leveområder for sjeldne arter og verdifulle naturtyper. Og disse har vi også forpliktelser overfor, gjennom FNs bærekraftsmål og konvensjonen om biologisk mangfold. Her ligger det en mulig konflikt mel¬lom ulike interesser. Hvordan kan vi øke og effektivisere uttaket av fornybare biologiske ressurser på en måte som ikke kommer i konflikt med målet om å sikre naturmangfoldet og målet om en miljømessig bærekraftig bioøkonomi? I denne sammenhengen er det nødvendig å være oppmerksom på at de land¬baserte fornybare biologiske ressursene til en viss grad konkurrerer om det samme arealet. Og det kan være slik at å produsere mer av én ressurs reduserer muligheten for å produsere en annen. Det finnes heller ikke noen omforent fasit for hva som er en miljømessig bærekraftig løsning. Dette er komplekse sammenhenger, og svaret kan vi ikke få gjennom noe enkelt regnestykke. Men ved hjelp av geografiske analyser kan vi belyse noen av de mulige utfordrin¬gene. I dette kapitlet legger vi frem analyser vi har gjort av forholdet mellom areal og potensielt økt uttak av skog. Vi har også analysert hvordan et slikt uttak kan komme til å påvirke rødlistede arter. Avslutningsvis ser vi nærmere på arealkonflikter som kan oppstå dersom skogarealet økes. Målet med analy¬sene er å bidra til en mest mulig kunnskapsbasert forvaltning av de landbaserte fornybare biologiske ressursene, samtidig som vi kommer nærmere målet om å sikre en bioøkonomi som også er miljømessig bærekraftig.

To document

Abstract

Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts—as being less fine‐tuned to host development—to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic‐level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.

To document

Abstract

New mortality models were developed for the purpose of improving long-term growth and yield simulations in Finland, Norway, and Sweden and were based on permanent national forest inventory plots from Sweden and Norway. Mortality was modelled in two steps. The first model predicts the probability of survival, while the second model predicts the proportion of basal area in surviving trees for plots where mortality has occurred. In both models, the logistic function was used. The models incorporate the variation in prediction period length and in plot size. Validation of both models indicated unbiased mortality rates with respect to various stand characteristics such as stand density, average tree diameter, stand age, and the proportion of different tree species, Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.), and broadleaves. When testing against an independent dataset of unmanaged spruce-dominated stands in Finland, the models provided unbiased prediction with respect to stand age.

To document

Abstract

An understanding of the relationship between volume increment and stand density (basal area, stand density index, etc.) is of utmost importance for properly managing stand density to achieve specific management objectives. There are two main approaches to analyse growth–density relationships. The first relates volume increment to stand density through a basic relationship, which can vary with site productivity, age, and potentially incorporates treatment effects. The second is to relate the volume increment and density of thinned experimental plots relative to that of an unthinned experimental plot on the same site. Using a dataset of 229 thinned and unthinned experimental plots of Norway spruce, a growth model is developed describing the relationship between gross or net volume increment and basal area. The models indicate that gross volume increases with increasing basal area up to 50 m2 and thereafter becomes constant out to the maximum basal area. Alternatively, net volume increment was maximized at a basal area of 43 m2 and decreased with further increases in basal area. However, the models indicated a wide range where net volume increment was essentially constant, varying by less than 1 m3 ha−1 year−1. An analysis of different thinning scenarios indicated that the relative relationship between volume increment and stand density was dynamic and changed over the course of a rotation.

To document

Abstract

The effective size of a population (Ne), which determines its level of neutral variability, is a key evolutionary parameter. Ne can substantially depart from census sizes of present-day breeding populations (NC) as a result of past demographic changes, variation in life-history traits and selection at linked sites. Using genome-wide data we estimated the long-term coalescent Ne for 17 pinniped species represented by 36 population samples (total n = 458 individuals). Ne estimates ranged from 8,936 to 91,178, were highly consistent within (sub)species and showed a strong positive correlation with NC (R2adj = 0.59; P = 0.0002). Ne/NC ratios were low (mean, 0.31; median, 0.13) and co-varied strongly with demographic history and, to a lesser degree, with species’ ecological and life-history variables such as breeding habitat. Residual variation in Ne/NC, after controlling for past demographic fluctuations, contained information about recent population size changes during the Anthropocene. Specifically, species of conservation concern typically had positive residuals indicative of a smaller contemporary NC than would be expected from their long-term Ne. This study highlights the value of comparative population genomic analyses for gauging the evolutionary processes governing genetic variation in natural populations, and provides a framework for identifying populations deserving closer conservation attention.

To document

Abstract

In a number of pathosystems involving the powdery mildews (Erysiphales), plant stress is associated with decreased disease susceptibility and is detrimental to pathogen growth and reproduction. However, in strawberry, anecdotal observations associate severe powdery mildew (Podosphaera aphanis) with water stress. In a 2017 survey of 42 strawberry growers in Norway and California, 40 growers agreed with a statement that water-stressed strawberry plants were more susceptible to powdery mildew compared with nonstressed plants. In repeated in vitro and in vivo experiments, we found that water stress was consistently and significantly unfavorable to conidial germination, infection, and increases in disease severity. Deleterious effects on the pathogen were observed from both preinoculation and postinoculation water stress in the host. Soil moisture content in the range from 0 to 50% was correlated (R2 = 0.897) with germinability of conidia harvested from extant colonies that developed on plants growing at different levels of water stress. These studies confirm that P. aphanis fits the norm for biotrophic powdery mildews and hosts under stress. Mild water stress, compared with a state of optimal hydration, is likely to decrease rather than increase susceptibility of strawberry to P. aphanis. We believe it is possible that foliar symptoms of leaf curling due to diffuse and inconspicuous infection of the lower leaf surfaces by P. aphanis could easily be mistakenly attributed to water stress, which we observed as having a nearly identical leaf curling symptom in strawberry.

Abstract

BACKGROUND: Bud dormancy is a quantitative condition that is gradually acquired and lost. Better and more convenient methods for assessment of the time of dormancy entrance of woody plants are highly needed. OBJECTIVE: To demonstrate a simple and convenient method for determination of dormancy in woody plants. METHODS: We employed a seasonal series of soft tipping of vigorously growing annual shoots and used the loss of ability of subtending lateral buds to break and grow as a measure of entrance into dormancy. RESULTS: There was a gradual decline in the ability of the buds to burst and grow during the month of July and early August, culminating with a complete loss of this ability. This coincided with the known time of growth cessation and dormancy induction in shoots of intact plants and occurred in the berry shrubs raspberry and black currant and the forest tree silver birch. CONCLUSIONS: The decline and loss of ability of the buds to grow during late summer is a direct expression of the entrance of buds into the state of endodormancy, rendering the tipping method a simple and convenient method for precise determination of the time of entrance into dormancy in woody plants.

To document

Abstract

1. Altered species composition caused by environmental and climatic change can affect the transfer of plant residues among communities. Whereas transferred residues are typically considered a resource in recipient systems, residues of allelopathic species may instead cause interference. 2. Evergreen dwarf shrubs, specifically the allelopathic species Empetrum nigrum are increasing in abundance in response to a warming climate. Empetrum has small, evergreen leaves that can be transferred to other communities when withered and lost from the plant. 3. We hypothesize that Empetrum can have allelopathic effects in the recipient communities of the withered leaves. We call this allochthonous allelopathy as opposed to autochthonous allelopathy, which is well documented in communities where the plant grows. 4. We measured influx of allochthonous Empetrum leaves onto snow-covered snowbeds, where they are easily identified within the debris. Next, we compared the bioactivity of allochthonous withered leaves with that of green Empetrum leaves. Finally, we conducted an experiment testing the germination and seedling growth of 10 tundra species in snowbed soil supplemented with no (control) and three densities of allochthonous Empetrum leaves. 5. We found Empetrum leaves to be common on the snow cover of snowbeds. We found Empetrum leaves collected on snowbeds to be as bioactive as green leaves. Finally, we found forb species to have reduced germination and all 10 species to have delayed seedling development when growing in snowbed soil supplemented with withered Empetrum leaves. Seedlings under the control treatment were 2.3 times longer and had 3.2 times more leaves in comparison to seedlings grown under the strongest allochthonous leaf treatment. 6. Results from our study imply that Empetrum is allelopathic in recipient systems of its allochthonous leaves. The abundant nature of Empetrum in the tundra suggests that allochthonous allelopathy is a common phenomenon, causing biotic stress in snowbeds and potentially other parts of the tundra. Exemplifying the ability of a plant to interfere in neighbouring communities, our study demonstrates a plant trait that may provide insight to other study systems.

To document

Abstract

BACKGROUND:The predicted and ongoing climate warming can have far-reaching effects on plant growth and life cycle. Therefore, there is need for simple and convenient methods for analysis and monitoring of consequences of the ongoing warming. OBJECTIVE:To demonstrate the usefulness of so-called climate-photothermographs for studying the consequences of the ongoing warming for production of berry crops. METHODS:Local photothermal climates can be expressed by so-called climate-photothermographs, which show the relationship between temperature and daylength for each month of the year in a rectangular coordinate diagram. When superimposing critical response curves for plant development processes on top of such a diagram, the limitations of the given climate for fulfilment of the processes can be readily assessed. RESULTS:Consequences of 2°C warming for critical development processes such as transition to flowering and breaking of winter dormancy in the berry crops raspberry, black currant and strawberry were clearly exposed by the technique. The locations Geisenheim, Germany and Ås, Norway were used as examples. Inadequate winter chill was identified as the most limiting factor for these crops. CONCLUSIONS:We conclude that the technique is an efficient and convenient tool for monitoring the consequences of climate warming for berry crops.

To document

Abstract

Reference conditions of water bodies are defined as the natural or minimal anthropogenically disturbed state. We compared the methods for determining total phosphorus and total nitrogen concentrations in rivers in Finland, Norway and Sweden as well as the established reference conditions and evaluated the possibility for transfer and harmonisation of methods. We found that both methods and values differed, especially for lowland rivers with a high proportion of agriculture in the catchment. Since Denmark has not yet set reference conditions for rivers, two of the Nordic methods were tested for Danish conditions. We conclude that some of the established methods are promising but that further development is required. We moreover argue that harmonisation of reference conditions is needed to obtain common benchmarks for assessing the impacts of current and future land use changes on water quality.

To document

Abstract

Effective evidence-based nature conservation and habitat management relies on developing and refining our methodological toolbox for detecting critical ecological changes at an early stage. This requires not only optimizing the use and integration of evidence from available data, but also optimizing methods for dealing with imperfect knowledge and data deficiencies. For policy and management relevance, ecological data are often synthesized into indicators, which are assessed against reference levels and limit values. Here we explore challenges and opportunities in defining ecological condition in relation to a reference condition reflecting intact ecosystems, as well as setting limit values for good ecological condition, linked to critical ecological thresholds in dose–response relationships between pressures and condition variables. These two concepts have been widely studied and implemented in aquatic sciences, but rarely in terrestrial systems. In this paper, we address practical considerations, theoretical challenges and possible solutions using different approaches to determine reference and limit values for good ecological condition in terrestrial ecosystems, based on empirical experiences from a case study in central Norway. We present five approaches for setting indicator reference values for intact ecosystems: absolute biophysical boundaries, reference areas, reference communities, ecosystem dynamics based models, and habitat availability based models. We further present four approaches for identifying indicator limit values for good ecological condition: empirically estimated values, statistical distributions, assumed linear relationships, and expert judgement-based limits. This exercise highlights the versatile and robust nature of ecological condition assessments based on reference and limit values for different management purposes, for situations where knowledge of the underlying relationships is lacking, and for situations limited by data availability. Ecological condition Index Management Reference condition Terrestrial

To document

Abstract

This article focus is on the perceived impact that aquaculture industry has on coastal communities in Northern Norway. Here, aquaculture is key industry with natural, social and economic impacts. In natural resource management in general, identifying and monitoring the perceived social impacts can be a useful tool for local planning. In order to ensure the blue growth goals of the Norwegian government and avoid conflict and mistrust in the future, it is important to understand how both the general public and stakeholders perceive the aquaculture industry, how it affects them and its use of space in the coastal zone. Hence, we ask a) how do coastal communities perceive the aquaculture industry and b) is there a legitimacy gap between the blue growth strategies of the Norwegian Government and the public? In order to answer these questions, we lean on theories related to legitimacy and stakeholder's participation. Original data were collected from structured (N = 150) and semi-structured interviews (N = 10) in two coastal communities in Northern Norway (Alstahaug and Brønnøy). Our findings suggest that a legitimacy gap does exist between blue growth goals and fishers in the communities studied, while the general citizen holds a positive attitude towards aquaculture. Insights from this study are useful for local, regional and national decision makers with responsibility for natural resource policies and development efforts.

To document

Abstract

Agricultural, forestry‐impacted and natural catchments are all vectors of nutrient loading in the Nordic countries. Here, we present concentrations and fluxes of total nitrogen (totN) and phosphorus (totP) from 69 Nordic headwater catchments (Denmark: 12, Finland:18, Norway:17, Sweden:22) between 2000 and 2018. Catchments span the range of Nordic climatic and environmental conditions and include natural sites and sites impacted by agricultural and forest management. Concentrations and fluxes of totN and totP were highest in agricultural catchments, intermediate in forestry‐impacted and lowest in natural catchments, and were positively related %agricultural land cover and summer temperature. Summer temperature may be a proxy for terrestrial productivity, while %agricultural land cover might be a proxy for catchment nutrient inputs. A regional trend analysis showed significant declines in N concentrations and export across agricultural (−15 μg totN L−1 year−1) and natural (−0.4 μg NO3‐N L−1 year−1) catchments, but individual sites displayed few long‐term trends in concentrations (totN: 22%, totP: 25%) or export (totN: 6%, totP: 9%). Forestry‐impacted sites had a significant decline in totP (−0.1 μg P L−1 year−1). A small but significant increase in totP fluxes (+0.4 kg P km−2 year−1) from agricultural catchments was found, and countries showed contrasting patterns. Trends in annual concentrations and fluxes of totP and totN could not be explained in a straightforward way by changes in runoff or climate. Explanations for the totN decline include national mitigation measures in agriculture international policy to reduced air pollution and, possibly, large‐scale increases in forest growth. Mitigation to reduce phosphorus appears to be more challenging than for nitrogen. If the green shift entails intensification of agricultural and forest production, new challenges for protection of water quality will emerge possible exacerbated by climate change. Further analysis of headwater totN and totP export should include seasonal trends, aquatic nutrient species and a focus on catchment nutrient inputs.

Abstract

This study aims to identify some of the critically important factors in the sustainability of microbreweries in peripheral northern areas, focusing on the entrepreneurs’ understanding of sustainability. Theoretically, this study adopts the perspective of service-dominant logic on value. Methodologically, it uses an action-research approach and conducts in-depth interviews with four entrepreneurs. The findings suggest that the entrepreneurs reflect on several relevant issues in line with sustainability thinking. The perception of sustainability, especially environmental sustainability, is one subject that the entrepreneurs perceive and sometimes in conflict with the economic sustainability of their businesses. Constraints recognized include the lack of strategic planning and explicit discussions about sustainability with potential stakeholders. A critically important factor for the sustainability of microbreweries is the need for entrepreneurs to engage in wider discussions about the conceptual and practical aspects of sustainability, especially with government and community bodies.

To document

Abstract

The emergence of antibiotic-resistant pathogens has caused a serious worldwide problem in infection treatment in recent years. One of the pathogens is methicillin-resistant Staphylococcus aureus (MRSA), which is a major cause of skin and soft tissue infections. Alternative strategies and novel sources of antimicrobials to solve antibiotic resistance problems are urgently needed. In this study, we explored the potential of two broad-spectrum bacteriocins, garvicin KS and micrococcin P1, in skin infection treatments. The two bacteriocins acted synergistically with each other and with penicillin G in killing MRSA in vitro. The MICs of the antimicrobials in the three-component mixture were 40 ng/ml for micrococcin P1 and 2 μg/ml for garvicin KS and penicillin G, which were 62, 16, and at least 1,250 times lower than their MICs when assessed individually. To assess its therapeutic potential further, we challenged the three-component formulation in a murine skin infection model with the multidrug-resistant luciferase-tagged MRSA Xen31, a strain derived from the clinical isolate S. aureus ATCC 33591. Using the tagged-luciferase activity as a reporter for the presence of Xen31 in wounds, we demonstrated that the three-component formulation was efficient in eradicating the pathogen from treated wounds. Furthermore, compared to Fucidin cream, which is an antibiotic commonly used in skin infection treatments, our formulation was also superior in terms of preventing resistance development.

To document

Abstract

A survey of helminths associated with terrestrial slugs focusing on the invasive Arion vulgaris and the native A. ater was conducted on populations from France, Germany, Netherlands, Norway and Poland. In total, 648 terrestrial slugs were collected from 18 sample sites, and identified by means of morphological examination, dissection of genitalia and molecular analysis using mitochondrial DNA. In addition to A. vulgaris and A. ater, also A. vulgaris/A. rufus hybrids and A. ater/A. rufus hybrids were collected. Helminth species were identified based on morphological features and sequencing of the 18S and ITS rDNA regions. The parasites included four nematode species: Alloionema appendiculatum, Angiostoma sp., Phasmarhabditis hermaphrodita, Entomelas sp., two trematode species: Brachylaima mesostoma, Eurytrema sp., and one cestode (tapeworm) species: Skrjabinia sp. Alloionema appendiculatum was the most common helminth in the investigated slug populations. Furthermore, we found higher prevalence of trematodes in the invasive A. vulgaris compared with the native A. ater, while differences in the prevalence for nematodes were not as clear.

To document

Abstract

More than 30 years ago, the Nordic Gene Bank established a long-term experiment on seeds stored under permafrost conditions in an abandoned mine corridor in Svalbard, as a tool to monitor storage life under these conditions. The study included seeds from 16 Nordic agricultural and horticultural crops, each represented by two or three cultivars (altogether 38 accessions). All seeds were ultra-dried to 3–5% moisture before being sealed in glass tubes. Germination tests were performed in accordance with the International Seed Testing Association (ISTA) protocols. At the initiation of the experiment, the samples showed good germination with the median value at 92%. The overall picture remained stable over the first twenty to twenty-five years. However, the variation became larger over time and at 30 years, the median value had dropped to 80%. At the lower end, with a high drop in germination, we found rye, wheat, and English ryegrass. At the upper end, we found Kentucky bluegrass and cucumber. The lowest germination was found in samples with the highest initial seed moisture levels. Pre-storage conditions are likely to be of major importance for longevity.

To document

Abstract

Aim: The Guineo‐Congolian region in Africa constitutes the second largest area of tropical rainforest (TRF) in the world. It covered an estimated 15–22 million km2 during the late Miocene (55–11 Ma) and it has experienced since a declining trend, currently reaching 3.4 million km2, associated with increasing aridification and the replacement of TRF by savanna habitats. Here, we examine whether rainforest area contraction led to a decrease in net diversification rates linked to increasing extinction, or if it is associated with increasing opportunities for allopatric or ecological speciation during periods of forest fragmentation. Location: Tropical Africa, Guineo‐Congolian region. Taxon: Anthonotha, Englerodendron, Berlinia clade (Leguminosae). Methods: We used a target enrichment approach combined with a complete data set representing all genera within the Berlinia clade. We combined phylogenomic, dating estimates, habitat reconstruction and diversification rate analyses to infer the effect of change in rainforest area coverage at two taxonomic levels: among genera, and within Anthonotha and Englerodendron. Results: We recovered fully resolved and well‐supported relationships among all genera and among species within the two genera. Most genera (87.5%) diverged before the Pleistocene, but Anthonotha and Englerodendron diversified recently, during the most recent cycles of forest contraction and expansion of the Pleistocene. Main conclusions: Our results suggest that the Berlinia clade displays an overall trend of accumulation of species over evolutionary time, suggesting the reduction in TRF area has not decreased net diversification rates. Most habitat shifts to savanna occurred in the Miocene, with no major habitat shifts during the most recent phases of forest expansion–contraction in the Pleistocene. Shifts in habitat from lowland forest to savanna did not trigger diversification rates, but habitat fragmentation might have increased diversification rates through allopatric speciation.

To document

Abstract

Emission intensities from beef production vary both among production systems (countries) and farms within a country depending upon use of natural resources and management practices. A whole-farm model developed for Norwegian suckler cow herds, HolosNorBeef, was used to estimate GHG emissions from 27 commercial beef farms in Norway with Angus, Hereford, and Charolais cattle. HolosNorBeef considers direct emissions of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) from on-farm livestock production and indirect N2O and CO2 emissions associated with inputs used on the farm. The corresponding soil carbon (C) emissions are estimated using the Introductory Carbon Balance Model (ICBM). The farms were distributed across Norway with varying climate and natural resource bases. The estimated emission intensities ranged from 22.5 to 45.2 kg CO2 equivalents (eq) (kg carcass)−1. Enteric CH4 was the largest source, accounting for 44% of the total GHG emissions on average, dependent on dry matter intake (DMI). Soil C was the largest source of variation between individual farms and accounted for 6% of the emissions on average. Variation in GHG intensity among farms was reduced and farms within region East, Mid and North re-ranked in terms of emission intensities when soil C was excluded. Ignoring soil C, estimated emission intensities ranged from 21.5 to 34.1 kg CO2 eq (kg carcass)−1. High C loss from farms with high initial soil organic carbon (SOC) content warrants further examination of the C balance of permanent grasslands as a potential mitigation option for beef production systems.

Abstract

Organic amendments can improve grassland productivity. Timothy and tall fescue were sown on a sandy loam and a coarse sand at Særheim, Norway, in September 2016 and on a loamy sand at Skierniewice, Poland, in April 2017, and cut and fertilised according to normal practices for the two regions from 2017 to 2019. At both sites, 0.75 kg DM m-2 of either digested or undigested manure (the latter with or without 2.9 kg biochar m-2) were incorporated prior to sowing. On the coarse sand at Særheim, total seasonal tall fescue yield in 2018 was 46–60% higher in the organic amendment treatments, and total seasonal timothy yield in the digestate treatment was 97% higher, than in the control treatment for the same species with only mineral fertiliser. On the sandy loam at Særheim and the loamy sand at Skierniewice, none of the amendments resulted in significant yield increments. These results indicate a clear effect on soil type on grassland biomass response to organic amendments.

To document

Abstract

* In forests, ectomycorrhizal mycelium is pivotal for driving soil carbon and nutrient cycles, but how ectomycorrhizal mycelial dynamics vary in ecosystems with drought periods is unknown. We quantified the production and turnover of mycorrhizal mycelium in Mediterranean Pinus pinaster, Pinus sylvestris and Quercus ilex forests and related the estimates to standardised precipitation index (SPI), to study how mycelial dynamics relates to tree species and drought‐moisture conditions. * Production and turnover of mycelium was estimated between July and February, by quantifying the fungal biomass (ergosterol) in ingrowth mesh bags and using statistical modelling. SPI for time scales of 1–3 months was calculated from precipitation records and precipitation data over the study period. * Forests dominated by Pinus trees displayed higher biomass but were seasonally more variable, as opposed to Q. ilex forests where the mycelial biomass remained lower and stable over the season. Production and turnover, respectively, varied between 1.4–5.9 kg ha−1 d−1 and 7.2–9.9 times yr−1 over the different forest types and were positively correlated with 2‐month and 3‐month SPI over the study period. * Our results demonstrated that mycorrhizal mycelial biomass varied with season and tree species and we speculate that production and turnover are related to physiology and plant host performance during drought.

To document

Abstract

Semelparous annual plants flower a single time during their 1‐yr life cycle, investing much of their energy into rapid reproduction. By contrast, iteroparous perennial plants flower multiple times over several years, and partition their resources between reproduction and persistence. To which extent evolutionary transitions between life‐cycle strategies are internally constrained at the developmental, genetic and phylogenetic level is unknown. Here we study the evolution of life‐cycle strategies in the grass subfamily Pooideae and test if transitions between them are facilitated by evolutionary precursors. We integrate ecological, life‐cycle strategy and growth data in a phylogenetic framework. We investigate if growth traits are candidates for a precursor. Species in certain Pooideae clades are predisposed to evolve annuality from perenniality, potentially due to the shared inheritance of specific evolutionary precursors. Seasonal dry climates, which have been linked to annuality, were only able to select for transitions to annuality when the precursor was present. Allocation of more resources to above‐ground rather than below‐ground growth is a candidate for the precursor. Our findings support the hypothesis that only certain lineages can respond quickly to changing external conditions by switching their life‐cycle strategy, likely due to the presence of evolutionary precursors.

To document

Abstract

1. Ecological network theory hypothesizes that the structuring of species interactions can convey stability to the system. Investigating how these structures react to species loss is fundamental for understanding network disassembly or their robustness. However, this topic has mainly been studied in‐silico so far. 2. Here, in an experimental manipulation, we sequentially removed four generalist plants from real plant–pollinator networks. We explored the effects on, and drivers of, species and interaction disappearance, network structure and interaction rewiring. First, we compared both the local extinctions of species and interactions and the observed network indices with those expected from three co‐extinction models. Second, we investigated the trends in network indices and rewiring rate after plant removal and the pollinator tendency at establishing novel links in relation to their proportional visitation to the removed plants. Furthermore, we explored the underlying drivers of network assembly with probability matrices based on ecological traits. 3. Our results indicate that the cumulative local extinctions of species and interactions increased faster with generalist plant loss than what was expected by co‐extinction models, which predicted the survival or disappearance of many species incorrectly, and the observed network indices were lowly correlated to those predicted by co‐extinction models. Furthermore, the real networks reacted in complex ways to plant removal. First, network nestedness decreased and modularity increased. Second, although species abundance was a main assembly rule, opportunistic random interactions and structural unpredictability emerged as plants were removed. Both these reactions could indicate network instability and fragility. Other results showed network reorganization, as rewiring rate was high and asymmetries between network levels emerged as plants increased their centrality. Moreover, the generalist pollinators that had frequently visited both the plants targeted of removal and the non‐target plants tended to establish novel links more than who either had only visited the removal plants or avoided to do so. 4. With the experimental manipulation of real networks, our study shows that despite their reorganizational ability, plant–pollinator networks changed towards a more fragile state when generalist plants are lost.

To document

Abstract

To improve risk assessment, control and treatment strategies of contaminated sites, we require accurate methods for monitoring solute transport and infiltration in the unsaturated zone. Highly spatio‐temporal heterogeneous infiltration during snowmelt increases the risk of contaminating the groundwater in areas where de‐icing chemicals are required for winter maintenance of roads and runways. The objective of this study is to quantify how the different processes occurring during snowmelt infiltration of contaminated meltwater affect bulk electrical resistivity. Field experiments conducted at Moreppen experimental lysimeter trench are combined with heterogeneous unsaturated soil modelling. The experimental site is located next to Oslo airport, Gardermoen, Norway, where large amounts of de‐icing chemicals are used to remove snow and ice every winter. Bromide, an inactive tracer, and the de‐icing chemical propylene glycol were applied to the snow cover prior to the onset of snowmelt, and their percolation through the unsaturated zone was monitored with water sampling from 37 suction cups. At the same time, cross‐borehole time‐lapse electrical resistivity measurements were recorded along with measurements of soil water tension and temperature. Images of two‐dimensional (2D) bulk resistivity profiles were determined and were temperature corrected, to compensate for the change in soil temperature throughout the melting period. By using fitted parameters of petrophysical relations for the Moreppen soil, the tensiometer data gave insight into the contribution of water saturation on the changes in bulk resistivity, while water samples provided the contribution to the bulk resistivity from salt concentrations. The experimental data were compared with numerical simulation of the same experimental conditions in a heterogeneous unsaturated soil and used to quantify the uncertainty caused by the non‐consistent resolutions of the different methods, and to increase our understanding of the resistivity signal measured with time‐lapse electrical resistivity tomography. The work clearly illustrates the importance of ground truthing in multiple locations to obtain an accurate description of the contaminant transport.

To document

Abstract

As the periodic emission of light pulses by light emitting diodes (LEDs) is known to stimulate growth or induce high value biocompounds in microalgae, this flashing light regime was tested on growth and biochemical composition of the microalgae Nannochloropsis gaditana, Koliella antarctica and Tetraselmis chui. At low flashing light frequencies (e.g., 5 and 50 Hz, Duty cycle = 0.05), a strain-dependent growth inhibition and an accumulation of protein, polyunsaturated fatty acids, chlorophyll or carotenoids (lutein, β-carotene, violaxanthin and neoxanthin) was observed. In addition, a 4-day application of low-frequency flashing light to concentrated cultures increased productivities of eicosapentaenoic acid (EPA) and specific carotenoids up to three-fold compared to continuous or high frequency flashing light (500 Hz, Duty cycle = 0.05). Therefore, applying low-frequency flashing light as finishing step in industrial production can increase protein, polyunsaturated fatty acids or pigment contents in biomass, leading to high-value algal products.

To document

Abstract

Many Norwegian consumers eat more red meat than is recommended by the Government. Of the protein currently consumed, 75% is of animal origin. Natural conditions in Norway favour the production of meat, dairy and seafood but high-protein plants can also be grown in the country. This study analysed the environmental impact of growing turnip rapeseed (Brassica rapa) and rapeseed (Brassica napus) and the processing of rapeseed into dietary oil and press cake. The results were then compared with some common animal protein food sources. Impacts were calculated for 24 impact indicators. The climate impact of dried seeds was 1.19 kg CO2-eq/kg, for rape oil—3.0 kg CO2-eq/kg and for rapeseed press cake—0.72 kg CO2-eq/kg. The environmental impact of rapeseed production is higher than in most other countries, predominantly due to lower yields. Press cake from rapeseed could be a valuable source of protein in foods. In Norway, the environmental impacts of this material (climate impact—2.5 kg CO2-eq/kg protein) are at the same level as other plant protein sources, but far lower than some of the most common animal protein sources (climate impact—16–35 kg CO2-eq/kg protein). When comparing the impacts while taking nutrient content into account, these differences remained the same. Improvements in the environmental performance of oilseed and its products can be achieved both by improving yields through better agronomic practices and increasing the proportion of winter rapeseed.

To document

Abstract

The European Boreal Forest Vegetation Database (EBFVD, GIVD ID: EU-00-027) is a repository for vegetation-plot data from the forests of the boreal and hemiboreal zones of Europe. In this report, we describe its structure, current content and future perspectives opened up by the database. In February 2019, the database contained 13 037 vegetation-plot records from Belarus, Estonia, Finland, Latvia, Norway, Russia and Sweden that are not yet stored in the databases of the European Vegetation Archive (EVA). Consequently, this database significantly improves the availability of forest plant community data from Northern Europe. The database is managed by the Vegetation Science Group, Department of Botany and Zoology, Masaryk University, Brno (Czech Republic), in the TURBOVEG 2 program. It is registered in the Global Index of Vegetation Plot Databases (GIVD) and included in EVA. The whole database, or a subset of it, can be requested via EVA, or directly from the database custodian.

To document

Abstract

This paper analyses two strategies to reduce the use of pesticides in grain production. We study Norwegian farmers’ willingness to voluntarily forego income by reducing pesticide use as well as their responses to a doubling of the pesticide price (through increased pesticide taxes). We use mixed methods including an experiment, a survey and focus group discussions. The experiment shows that most farmers are willing to sacrifice some income to reduce environmental risks by using less pesticide. According to the survey, they are, at the same time, relatively insensitive to a 100% price increase on herbicides and fungicides. While the response to the price increase probably would have been stronger if differentiated between chemicals, our research indicates potential benefits from supporting voluntary action. Value orientations and agronomic conditions influence the stated responses in both circumstances. Respondents emphasizing environmental values are more willing to voluntarily reduce pesticide use and show a greater response to the economic incentive than farmers emphasizing economic outcome and issues such as clean fields. A hypothesized willingness to reduce pesticide use voluntarily to strengthen the reputation of the sector was, however, rejected. Farmers appear to have few alternatives to pesticides, but increased knowledge about the alternatives that do exist, seems able to promote some change. Our findings suggest that the extension service should put greater emphasis on these options, even if they may have negative effects on income.

To document

Abstract

Blueberries are distinguished by their purple-blue fruit color, which develops during ripening and is derived from a characteristic composition of flavonoid-derived anthocyanin pigments. The production of anthocyanins is confined to fruit skin, leaving the colorless fruit flesh devoid of these compounds. By linking accumulation patterns of phenolic metabolites with gene transcription in Northern Highbush (Vaccinium corymbosum) and Rabbiteye (Vaccinium virgatum) blueberry, we investigated factors limiting anthocyanin production in berry flesh. We find that flavonoid production was generally lower in fruit flesh compared with skin and concentrations further declined during maturation. A common set of structural genes was identified across both species, indicating that tissue-specific flavonoid biosynthesis was dependent on co-expression of multiple pathway genes and limited by the phenylpropanoid pathway in combination with CHS, F3H, and ANS as potential pathway bottlenecks. While metabolite concentrations were comparable between the blueberry genotypes when fully ripe, the anthocyanin composition was distinct and depended on the degree of hydroxylation/methoxylation of the anthocyanidin moiety in combination with genotype-specific glycosylation patterns. Co-correlation analysis of phenolic metabolites with pathway structural genes revealed characteristic isoforms of O-methyltransferases and UDP-glucose:flavonoid-3-O-glycosyltransferase that were likely to modulate anthocyanin composition. Finally, we identified candidate transcriptional regulators that were co-expressed with structural genes, including the activators MYBA, MYBPA1, and bHLH2 together with the repressor MYBC2, which suggested an interdependent role in anthocyanin regulation.

To document

Abstract

Sweet potato (Ipomoea batatas L. Lam) has become one of the staple crops in Africa in the last 20 years. In Ethiopia, sweet potato is the second most widely grown root crop and is the first regarding the production per hectare. Thus, there is a great demand of planting material throughout the country. Currently, planting material is usually obtained from own previous season harvest, local markets or from the neighboring fields since no certified clean planting material production scheme has been established in Ethiopia yet. Unfortunately, this practice has contributed to the spread of viral diseases throughout the country. Elimination of viruses from infected plants is a tedious job, which requires efficient methods to eliminate the virus and also to verify that the plants are indeed virus-free. In the case of sweet potato, it was observed that heat treatment, combined with meristem tip culture is an efficient method for virus elimination. Previous findings indicate that reverse transcription (RT) PCR is more efficient than ELISA to verify the efficiency of virus elimination. In this study, the use of next generation sequencing (NGS) was explored as a verification method and compared with RT-PCR. The results show that NGS seems to be more efficient than RT-PCR, although also prone to inconclusive results.

To document

Abstract

Red-listed species are often used as target species in selection of sites for conservation. However, limitations to their use have been pointed out, and here we address the problem of expected high spatio-temporal dynamics of red-listed species. We used species data (vascular plants, bryophytes, macrolichens and polypore fungi) from two inventories 17 years apart to estimate temporal turnover of red-listed and non-red-listed species in two forest areas (147 and 195 ha) and of plots (0.25 ha) within each area. Furthermore, we investigated how turnover of species afected the rank order of plots regarding richness of red-listed species, using two diferent national Red List issues (1998 and 2015). In both study areas, temporal turnover was substantial, despite minor changes in the overall number of species. At plot level, temporal turnover in red-listed species was higher than in non-red-listed species, but similar to non-red-listed species of the same frequency of occurrence. Adding the efect of changing identities of species red-listed according to the two Red List issues, further increased the estimated spatio-temporal dynamics. Recorded spatio-temporal turnover also resulted in substantial changes in the rank order of plots regarding richness of red-listed species. Using rare red-listed species for site selection may therefore be accompanied by a higher loss of conservation efectiveness over time than for more common species, and particularly at fner scales. Red-listed species · Site selection · Spatio-temporal dynamics · Temporal turnover

To document

Abstract

Sweet potato (Ipomoea batatas (L.) Lam.) is an important root crop for poor farmers in developing countries. Since the late 1980s, viral diseases have increasingly become a threat to sweet potato production in Ethiopia. This review paper presents the role of sweet potato production for ensuring food security, the level of sweet potato virus research, including the types of viral species identified and their current level of incidences in Ethiopia. Sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato virus 2 (SPV2), Sweet potato virus G (SPVG), and Cucumber mosaic virus (CMV) were reported in Ethiopia, where the first two are the most common and exist at high incidences. In addition, this paper discusses the virus vectors, virus transmission methods to new farms, factors exacerbating the rate of viral incidence and the methods used to reduce the incidences. Moreover, it highlights methods of sweet potato viruses’ detection and cleaning of infected materials in use and the challenges encountered towards the efficient utilization of the methods. Finally, we suggest major intervention techniques that will integrate all key players in managing the impact of the virus on sweet potato production to improve productivity and ensuring food security in Ethiopia. The findings obtained from this review could be an input for the current research on sweet potato improvement (both planting materials and routines) in Ethiopia.

To document

Abstract

Background Sphingolipids are structural components and signaling molecules in eukaryotic membranes, and many organisms produce compounds that inhibit sphingolipid metabolism. Some of the inhibitors are structurally similar to the sphingolipid biosynthetic intermediate sphinganine and are referred to as sphinganine-analog metabolites (SAMs). The mycotoxins fumonisins, which are frequent contaminants in maize, are one family of SAMs. Due to food and feed safety concerns, fumonisin biosynthesis has been investigated extensively, including characterization of the fumonisin biosynthetic gene cluster in the agriculturally important fungi Aspergillus and Fusarium. Production of several other SAMs has also been reported in fungi, but there is almost no information on their biosynthesis. There is also little information on how widely SAM production occurs in fungi or on the extent of structural variation of fungal SAMs. Results Using fumonisin biosynthesis as a model, we predicted that SAM biosynthetic gene clusters in fungi should include a polyketide synthase (PKS), an aminotransferase and a dehydrogenase gene. Surveys of genome sequences identified five putative clusters with this three-gene combination in 92 of 186 Fusarium species examined. Collectively, the putative SAM clusters were distributed widely but discontinuously among the species. We propose that the SAM5 cluster confers production of a previously reported Fusarium SAM, 2-amino-14,16-dimethyloctadecan-3-ol (AOD), based on the occurrence of AOD production only in species with the cluster and on deletion analysis of the SAM5 cluster PKS gene. We also identified SAM clusters in 24 species of other fungal genera, and propose that one of the clusters confers production of sphingofungin, a previously reported Aspergillus SAM. Conclusion Our results provide a genomics approach to identify novel SAM biosynthetic gene clusters in fungi, which should in turn contribute to identification of novel SAMs with applications in medicine and other fields. Information about novel SAMs could also provide insights into the role of SAMs in the ecology of fungi. Such insights have potential to contribute to strategies to reduce fumonisin contamination in crops and to control crop diseases caused by SAM-producing fungi.

To document

Abstract

Powdery mildew (Podosphaera aphanis) is a destructive and widespread disease of strawberry (Fragaria × ananassa), especially when susceptible cultivars are grown in high plastic tunnels or glasshouses. Many powdery mildews thrive in humid environments but free water films on plant surfaces can inhibit conidial germination of some species. We hypothesized that P. aphanis might be directly suppressed by rain through the action of water films and meteoric water. In repeated experiments, the hydrophobic conidia of P. aphanis collected on the surface of water droplets, resulting in their removal when the droplets rolled over the leaf surfaces and fell to the ground. Meteoric water and water films also damaged conidiophores. Brief midday water mists applied in pulses lasting 1 min each four times per day were as effective as multiple fungicide treatments in suppressing powdery mildew. Rapid drying of the pulsed mists resulted in effective suppression of powdery mildew without consequent increases of fungal pathogens that might benefit from water films. The timing and duration of water sprinkling has been refined to the point where it can provide a commercially relevant degree of suppression of powdery mildew on strawberry in a high-tunnel production system.

To document

Abstract

The necrotrophic fungal pathogen Parastagonospora nodorum causes Septoria nodorum blotch (SNB), which is one of the dominating leaf blotch diseases of wheat in Norway. A total of 165 P. nodorum isolates were collected from three wheat growing regions in Norway from 2015 to 2017. These isolates, as well as nine isolates from other countries, were analyzed for genetic variation using 20 simple sequence repeat (SSR) markers. Genetic analysis of the isolate collection indicated that the P. nodorum pathogen population infecting Norwegian spring and winter wheat underwent regular sexual reproduction and exhibited a high level of genetic diversity, with no genetic subdivisions between sampled locations, years or host cultivars. A high frequency of the presence of necrotrophic effector (NE) gene SnToxA was found in Norwegian P. nodorum isolates compared to other parts of Europe, and we hypothesize that the SnToxA gene is the major virulence factor among the three known P. nodorum NE genes (SnToxA, SnTox1, and SnTox3) in the Norwegian pathogen population. While the importance of SNB has declined in much of Europe, Norway has remained as a P. nodorum hotspot, likely due at least in part to local adaptation of the pathogen population to ToxA sensitive Norwegian spring wheat cultivars.

To document

Abstract

Wheat disease management in Europe is mainly based on the use of fungicides and the cultivation of resistant cultivars. Improving disease management implies the formal comparison of disease management methods in terms of both crop health and yield levels (attainable yield, actual yield), thus enabling an assessment of yield losses and yield gains. Such an assessment is not available for wheat in Europe. The objective of the analysis reported here is to provide an overview of wheat health and yield performance in field experiments in Europe. Data from field experiments in six European countries (Belgium, France, Germany, Italy, Norway, and Sweden) conducted between 2013 and 2017 were analysed to that aim. Relationships between multiple disease levels, yield, level of cultivar resistance, level of fungicide protection, and weather patterns were assessed. The analyses included 73 field experiments, corresponding to a total of 447 [fungicide protection level x cultivar] combinations. Analyses across the six countries led to ranking the importance of foliar wheat diseases as follows, in decreasing order: leaf blotch (septoria tritici blotch, septoria nodorum blotch, and tan spot), leaf rust, yellow rust, and powdery mildew. Fusarium head blight was observed in France and Italy, and stem rust was sporadically observed in Italy. Disease patterns, crop inputs (fertiliser, fungicides), and yields widely varied within and across countries. Disease levels were affected by the level of fungicide use, by cultivar resistance, as well as by weather patterns. While this analysis enables a better documentation of the status of wheat health in Europe, it also highlights the critical need for policies in Europe enabling a more judicious use of pesticides. First, common standards for field experiments are needed (experimental designs and protocols; disease assessment procedures and scales; references, including reference-susceptible cultivars); second, assessments in farmers’ fields – and not in research stations – are necessary; and third, there is a need to use available process-based crop models to estimate attainable yields, and so, yield losses.

Abstract

Phosphorus is an essential plant nutrient, but primary resources are limited and overfertilization may cause eutrophication of freshwater. Our objectives were to examine temperature effects on (a) optimal P rate for turfgrass establishment, and (b) increasing rates of foliar vs. granular P for early spring growth of established greens. Two trials, both on USGA root zones and replicated in April−May over 2 yr, were conducted in daylight phytotrons at 7, 12 and 17 °C. Experiment 1 compared 5 P rates from 0 to 0.48 g P m−2 wk−1 for creeping bentgrass establishment on a sand containing 13 mg P kg−1 (Mehlich‐3). Results showed no temperature effect on the optimal P rate. Bentgrass coverage and clipping yield increased up to 0.12 and 0.24 g P m−2 wk−1, corresponding to 6 and 12% of the N input, respectively. The concentration of P in clippings was higher at 7 than at 17 °C indicating that temperature was more limiting to shoot growth than to P uptake. A higher root/top ratio showed that plants invested more in roots under P deficiency. Experiment 2 was conducted using intact cores from a 4‐yr‐old creeping bentgrass (Agrostis stolonifera L.) green with a Mehlich‐3 P level of 34 mg P kg−1. Results showed increased clipping yields up to 0.18 g P m−2 wk−1 and higher P uptake with granular than with foliar application, but there was no effect on turfgrass color and no interaction with temperature. Low temperatures did not justify higher P applications.

To document

Abstract

Transnational cooperation is a common strategy for addressing research and development (R&D) issues resulting from similar challenges that cut across administrative borders. Value chains for food and drinks are complex, and transdisciplinary work is recognised as a method for solving complex issues. The Northern Cereals project ran from 2015 to 2018, and its goal was to increase cereal production and the value of grain products in four regions in the Northern Periphery programme area. The project included both R&D, but the main emphasis was on development, and was carried out by transdisciplinary cooperation between R&D partners and small and medium-sized enterprises (SMEs). By reviewing the project’s methods, outcomes and composition, we discuss if a framework of transnational and transdisciplinary cooperation can help to develop the value chain from local barley to beer. We found that transnational cooperation was achieved successfully, that stakeholder involvement was crucial, but that academic disciplines such as marketing and innovation could have been included. In addition, we recognised that much work remains to further increase cereal production and the use of local grain in the Northern Periphery region, but believe that this project has laid a good foundation for further progress.

Abstract

Efficiency in agricultural food production has long been in focus and this has affected the spatial structure of agricultural land use. One outcome has been extensive criticism based on a wide range of negative consequences, such as for biodiversity, accessibility, cultural heritage, and aesthetics. In line with the European Landscape Convention (ELC), management of people’s everyday landscapes is important. In Norway, agricultural landscapes are the ‘everyday landscape’ for a large proportion of the population. The aim of the article is to contribute to the understanding of landscape changes perceived as positive or negative by the inhabitants. The authors focused on grain-crop dominated landscapes and the impact of smaller non-crop elements on people’s landscape preferences. They administered a photo-based questionnaire using manipulated photos to assess preferences for different agricultural landscapes. Additionally, people’s perceived objectives for the agricultural sector and agriculture’s primary functions were assessed. The results documented positive perceptions of added landscape elements and that people were both aware of and agreed on the multifunctional role of agriculture. The authors conclude that if the public’s preferences are to be taken into consideration, such as during policymaking, it is important to maintain various landscape elements in the large-scale grain field landscapes of Norway.

Abstract

The objective of this paper is to examine the economic performance of crop-producing farms accounting for unobserved heterogeneity,environmental variables, and regions. The empirical analysis was based on a translog cost function and unbalanced farm-level panel data for 1991–2013 from the 455 crop-producing farms with 3,885 observations (1,004observations from the central region and 2,881 observations from the eastern region). We found that the mean minimum costs were about 93% and 92% of the actual costs for crop farms in the central and eastern regions, respectively.The marginal effects of crop rotation, land tenure, off-farm activity, direct government support, and experience were positively associated with crop farm economic performance. The marginal contribution of these variables on economic performance increased in the years 2000–2013 compared with the years 1991–1999 in both regions.

To document

Abstract

Strawberries are rich in polyphenols which impart health benefits when metabolized by the gut microbiome, including anti-inflammatory, neuroprotective, and antiproliferative effects. In addition, polyphenolic anthocyanins contribute to the attractive color of strawberry fruits. However, the genetic basis of polyphenol biosynthesis has not been extensively studied in strawberry. In this investigation, ripe fruits from three cultivated strawberry populations were characterized for polyphenol content using HPLC-DAD-MSn and genotyped using the iStraw35k array. GWAS and QTL analyses identified genetic loci controlling polyphenol biosynthesis. QTL were identified on four chromosomes for pelargonidin-3-O-malonylglucoside, pelargonidin-3-O-acetylglucoside, cinnamoyl glucose, and ellagic acid deoxyhexoside biosynthesis. Presence/absence of ellagic acid deoxyhexoside and pelargonidin-3-O-malonylglucoside was found to be under the control of major gene loci on LG1X2 and LG6b, respectively, on the F. × ananassa linkage maps. Interrogation of gene predictions in the F. vesca reference genome sequence identified a single candidate gene for ellagic acid deoxyhexoside biosynthesis, while seven malonyltransferase genes were identified as candidates for pelargonidin-3-O-malonylglucoside biosynthesis. Homologous malonyltransferase genes were identified in the F. × ananassa ‘Camarosa’ genome sequence but the candidate for ellagic acid deoxyhexoside biosynthesis was absent from the ‘Camarosa’ sequence. This study demonstrated that polyphenol biosynthesis in strawberry is, in some cases,under simple genetic control, supporting previous observations of the presence or absence of these compounds in strawberry fruits. It has also shed light on the mechanisms controlling polyphenol biosynthesis and enhanced the knowledge of these biosynthesis pathways in strawberry. The above findings will facilitate breeding for strawberries enriched in compounds with beneficial health effects.

To document

Abstract

Several important vegetable crops grown outdoors in temperate climates in Europe can be damaged by the root-feeding larvae of Diptera (Delia radicum, Delia floralis, Chamaepsila rosae, Delia platura, Delia florilega, Delia antiqua). Knowledge of pest insect phenology is a key component of any Integrated Pest Management (IPM) strategy, and this review considers the methods used to monitor and forecast the occurrence of root-feeding flies as a basis for decision-making by growers and the ways that such information can be applied. It has highlighted some current management approaches where such information is very useful for decision support, for example, the management of C. rosae with insecticidal sprays and the management of all of these pests using crop covers. There are other approaches, particularly those that need to be applied at sowing or transplanting, where knowledge of pest phenology and abundance is less necessary. Going forward, it is likely that the number of insecticidal control options available to European vegetable growers will diminish and they will need to move from a strategy which often involves using a single ‘silver bullet’ to a combination of approaches/tools with partial effects (applied within an IPM framework). For the less-effective, combined methods, accurate information about pest phenology and abundance and reliable decision support are likely to be extremely important.

To document

Abstract

A major cost component in livestock production is feed, which suggests improved feed efficiency as a promising strategy to improve both competitiveness and environmental sustainability. This study has investigated the technical and economic efficiency of using two alternatives to the standard feeds in livestock production in Norway. Data was generated from two controlled feeding experiments involving dairy cows and finishing pigs. In the dairy cow experiment, grass silage optimal in protein content was compared to silage lower in protein content in rations to moderately yielding cows. In the pig experiment, imported soybean meal was compared to rapeseed meal in diets to finishing pigs. From Data Envelopment Analysis, we did not find significant within group as well as between group differences in technical efficiency of animals under different feeding strategies. Under the assumptions of the study, however, a feeding regime based on low protein silage was found to be cheaper (–9% to –10%) for moderately yielding dairy cows, suggesting that Norwegian milk production could be based on the low protein silage fed ad libitum. On the other hand, despite reducing feed costs, a feeding regime based on rapeseed meal was less profitable, although statistically insignificant, than soybean meal for finishing pig production. Therefore, the nutritional value must improve and/or the price of rapeseed meal drop before it becomes an economically acceptable replacement to soybean meal.

To document

Abstract

Bark beetles belonging to the genus Dryocoetes (Coleoptera, Curculionidae, Scolytinae) are known vectors of fungi, such as the pathogenic species Grosmannia dryocoetidis involved in alpine fir (Abies lasiocarpa) mortality. Associations between hardwood-infesting Dryocoetes species and fungi in Europe have received very little research attention. Ectosymbiotic fungi residing in Ceratocystiopsis and Leptographium (Ophiostomatales, Sordariomycetes, Ascomycota) were commonly detected in previous surveys of the Dryocoetes alni-associated mycobiome in Poland. The aim of this study was to accurately identify these isolates and to provide descriptions of the new species. The identification was conducted based on morphology and DNA sequence data for six loci (ITS1-5.8S, ITS2-28S, ACT, CAL, TUB2, and TEF1-α). This revealed two new species, described here as Ceratocystiopsis synnemata sp. nov. and Leptographium alneum sp. nov. The host trees for the new species included Alnus incana and Populus tremula. Ceratocystiopsis synnemata can be distinguished from its closely related species, C. pallidobrunnea, based on conidia morphology and conidiophores that aggregate in loosely arranged synnemata. Leptographium alneum is closely related to Grosmannia crassivaginata and differs from this species in having a larger ascomatal neck, and the presence of larger club-shaped cells.

To document

Abstract

Rapeseed oils are a valuable component of the diet. Mostly, there are refined oils deprived of valuable nutrients in the market, hence in recent times cold-pressed and unrefined oils have been available and popular among consumers. However, the low yield of this oil makes this product expensive. The aim of the study was to analyse the effectiveness of phosphorus reduction in crude oils, cold- and hot-pressed in the low-temperature bleaching process. Eight market-available bleaching earths was compared. The effectiveness of 90% was found with 2% (m/m) of Kerolite with hydrated magnesium silicate. An increase in the share of earths to 4% (m/m) resulted in the effectiveness of phosphorus reduction >90% in seven out of eight analysed cases. Bentonite activated with acid with the lowest MgO content was characterised by low efficiency <64%. The research shows that the effectiveness of phosphorus reduction was significantly affected by the composition of earths applied in the bleaching process at ambient temperature. The results of research confirm the high effectiveness of the process as it is not necessary to heat up the oil before the bleaching process. This method is recommended for existing and new industrial plant for two-stage rapeseed oil pressing.

To document

Abstract

Phytonematodes are globally important functional components of the belowground ecology in both natural and agricultural soils; they are a diverse group of which some species are economically important pests, and environmentally benign control strategies are being sought to control them. Using eco-evolutionary theory, we test the hypothesis that root-exudates of host plants will increase the ability of a hyperparasitic bacteria, Pasteuria penetrans and other closely related bacteria, to infect their homologous pest nematodes, whereas non-host root exudates will not. Plant root-exudates from good hosts, poor hosts and non-hosts were characterized by gas chromatographymass spectrometry (GC/MS) and we explore their interaction on the attachment of the hyperparasitic bacterial endospores to homologous and heterologous pest nematode cuticles. Although GC/MS did not identify any individual compounds as responsible for changes in cuticle susceptibility to endospore adhesion, standardized spore binding assays showed that Pasteuria endospore adhesion decreased with nematode age, and that infective juveniles pre-treated with homologous host root-exudates reduced the aging process and increased attachment of endospores to the nematode cuticle, whereas non-host root-exudates did not. We develop a working model in which plant root exudates manipulate the nematode cuticle aging process, and thereby, through increased bacterial endospore attachment, increase bacterial infection of pest nematodes. This we suggest would lead to a reduction of plant-parasitic nematode burden on the roots and increases plant fitness. Therefore, by the judicious manipulation of environmental factors produced by the plant root and by careful crop rotation this knowledge can help in the development of environmentally benign control strategies.

To document

Abstract

In the Pacific Northwest, forest roads have the potential to cause significant environmental degradation, especially to water resources due to increased sediment production. The goal of this research is to improve the understanding of road degradation during hauling by improving our understanding of the aggregate degradation process. We correlate the wear rates to standard material property tests that may allow for improved prediction of the impacts from forest roads based on the selection of aggregate surfacing. Finally, we determine the changes in stress distribution between the subgrade and aggregate interface. High-, medium-, and low-quality aggregates were used from three quarries in western Oregon for this project. These aggregates are indicative of the range of materials used on forest roads in the region. Two material property tests, namely the Los Angeles (LA) abrasion and micro-Deval tests, were used to determine their ability to predict aggregate performance during hauling by relating values for aggregate wear to these aggregate properties. Eighteen nonwoven geotextile bags were created, measuring 60 cm (two-feet long) and 20 cm (eight inches) in diameter, with a pore size equivalent to a 0.149 mm (# 100) sieve. They were filled with a known quantity and particle size distribution of aggregate and embedded into a newly constructed forest road. Stress gages were installed in the road surface between the aggregate and subgrade levels to record the changes in stress at the subgrade level. Samples were subjected to three levels of traffic (500, 950, and 1500 passes) using a loaded dump-truck that had a steering axle and one tandem drive axle, weighing 25,038 kg or 55,200 lb. The results showed that less breakage occurred with the medium- and high-quality aggregates than the low-quality aggregate. There was a correlation between the material property test (either the micro-Deval or the LA abrasion test) and the fine index, indicating the predictability of these tests in terms of aggregate performance. Finally, the higher quality aggregate was able to better distribute the stresses from the wheel better than the lower quality aggregate and was able to reduce the stress reaching the subgrade. Although the results are limited to the three types of rock used in this study, they indicate the ability of the high-quality aggregate to lessen the environmental impacts from forest roads.

To document

Abstract

The extraction of Rhodiola rosea rhizomes using natural deep eutectic solvent (NADES) consisting of lactic acid, glucose, fructose, and water was investigated. A two-level Plackett–Burman design with five variables, followed by the steepest ascent method, was undertaken to determine the optimal extraction conditions. Among the five parameters tested, particle size, extraction modulus, and water content were found to have the highest impact on the extrability of phenyletanes and phenylpropanoids. The concentration of active compounds was analyzed by HPLC. The predicted results showed that the extraction yield of the total phenyletanes and phenylpropanoids (25.62 mg/g) could be obtained under the following conditions: extraction time of 154 min, extraction temperature of 22 °C, extraction modulus of 40, molar water content of 5:1:11 (L-lactic acid:fructose:water, mol/mol), and a particle size of rhizomes of 0.5–1 mm. These predicted values were further verified by validation experiments in predicted conditions. The experimental yields of salidroside, tyrosol, rosavin, rosin, cinnamyl alcohol and total markers (sum of phenyletanes and phenylpropanoids in mg/g) were 11.90 ± 0.02, 0.36 ± 0.02, 12.23 ± 0.21, 1.41 ± 0.01, 0.20 ± 0.01, and 26.10 ± 0.27 mg/g, respectively, which corresponded well with the predicted values from the models.

To document

Abstract

The Norwegian coastal goat is a national and endangered breed. Coastal goat populations are mainly divided with a large mainland and two small island populations. The objective of this study is to describe genetic diversity in the feral Skorpa island population and its relationship to the mainland coastal goat population (Selje) using the Norwegian milk goat population as a reference. Analyses were based on 96 samples genotyped by the CaprineSNP50 Beadchip from three populations; 7 Skorpa (SK), 37 Selje (SE) and 52 Norwegian milk goats (MG). The SK population had significantly less genetic variation and higher levels of inbreeding than the two other populations. It was more distant from the two mainland populations than they were from each other. The marginal contribution of the SK population to genetic diversity was small. Means of introducing genetic diversity into the SK population should be considered if the population is prioritized for conservation.

To document

Abstract

The aim of this study was to evaluate genetic diversity within and between lines at the Norwegian live poultry gene bank as well as assessing the conservation value in an international context. Eight lines including the national breed, Jærhøns, were genotyped with the 600K Affymetrix® Axiom® Chicken Genotyping Array. The white egg layers were generally more inbred than the brown layers. Comparative analyses were carried out with 72 international populations of different origins. The lines that were last bred for commercial production in Norway, Norbrid, are clearly separated from the rest of the international set and more closely related to the current commercial lines. The brown egg layer Norbrid 7 has the highest relative contribution to genetic diversity. The Norwegian genebank lines are of conservation value in a national and international perspective, as they all add genetic diversity to the global set.

To document

Abstract

Prunus padus L. (bird cherry) belongs to the Racemosa group in subgenus Padus in the genus Prunus L. It is a hardy invasive species, which makes it valuable for securing slopes, and for eco-design. It is a good solitary park tree with early flowering of white flowers in racemes, which have a pleasant smell. However, it may be attacked by cherry-oat aphid, and the small ermine moth, which may weave giant webs over the whole tree, which demonstrates the important role of P. padus in the food web of forest ecosystems. The species is in balance with these pests, other herbivores and diseases throughout Europe and Asia. Another threat is the competition against the invasive P. serotina, but it seems that P. padus is not strongly threatened, though they compete for the same habitats. Moreover, human interference of forest community ecology is probably the greatest threat. The tree is not only winter hardy; it can also survive hot summers and tolerate a wide variety of soil types. It may form dense thickets due to the regeneration of branches bent to the ground and basal shoots, and may be invasive. These characteristics are important in determining the ecological niche of P. padus, which involves the position of the species within an ecosystem, comprising both its habitat requirements and the functional role. It is also important that P. padus has effective dispersal of pollen and seeds. This, together with the previously noted characteristics and the fact that the tree can cope well with climate change, define it as a not threatened species. However, the ssp. borealis is threatened and national level monitoring is required. Prunus padus has been exploited by farmers and rural population, but is less used today. However, it is still used for making syrup, jam and liquor. Moreover, the wood is valuable for wood carving and making cabinets. All tissues are valuable as sources of powerful natural antioxidants. However, the interest in the P. padus fruit and other tissues is overshadowed by the interest in other wild species of edible and human health-related berries. Moreover, the tree is used in horticulture as an ornamental in gardens and parks, values that deserve a new focus.

To document

Abstract

We review a recently discovered white spruce (Picea glauca) chemical defense against spruce budworm (Choristoneura fumiferana) involving hydroxyacetophenones. These defense metabolites detected in the foliage accumulate variably as the aglycons, piceol and pungenol, or the corresponding glucosides, picein and pungenin. We summarize current knowledge of the genetic, genomic, molecular, and biochemical underpinnings of this defense and its effects on C. fumiferana. We present an update with new results on the ontogenic variation and the phenological window of this defense, including analysis of transcript responses in P. glauca to C. fumiferana herbivory. We also discuss this chemical defense from an evolutionary and a breeding context.

Abstract

Studying summer farming and farm dairies in Sweden and Norway—the shared empirical basis of this essay—using methods that require a close proximity between the researcher and the researched working closely together can be a challenge. This is especially obvious when the studied community is subjected to frequent studies conducted by scholars and authorities. It became even more complicated as the researchers had different roles in the three projects discussed in this text. In Project One, researchers developed knowledge together with summer farmers, in Project Two the research group interacted with the summer farmers while implementing the UN Convention on Biological Diversity on behalf of the Swedish government and in Project Three researchers addressed summer farmers as respondents. It is our experience that research in which interaction with respondents is close often becomes a target of criticism from other scholars who claim that this type of research is incapable of producing valid and impartial knowledge due to suspected bias. In this article we discuss five types of ethical challenges met in the three projects, two of which are based on a community-based participatory research approach (CBPR) and one on a case study approach (CS). Starting off, from previous literature, we compare ethical dilemmas in both CBPR and CS with the help of the following concepts: creation of partnerships, participation and perceptions of truth, sources of conflicts and mistrust and the consequences of such research for quality, reliability and research integrity. Our research questions are: What are the ethical, practical, methodological, and scientific challenges and implications of research conducted in close proximity to informants? What can the research community learn from such experiences? [...]

To document

Abstract

Dollar spot was officially documented in Scandinavia in 2013 and the spread and damage from this disease has increased during last years. In summer 2017, on the golf greens with red fescue (Vallda GC, Sweden) and with the mixture of red fescue, colonial bentgrass and annual bluegrass (Roskilde GC, Denmark) rolling 2 times per week reduced dollar spot 61% and 37% and rolling 4 times per week reduced dollar spot 95% and 54%, respectively. Thus, rolling 3-4 times per week can be recommended on golf greens with dollar spot pressure. In the experiment 2018 dollar spot was reduced 24% with increase in nitrogen from 150 to 240 kg ha-1 yr-1 on creeping bentgrass/annual bluegrass golf green (Kävlinge GK, Sweden). However, the increased N-rate lead to a higher degree Microdochium patch from 14% to 30%.

To document

Abstract

Wood in service is sequestering carbon, but it is principally prone to deterioration where different fungi metabolize wood, and carbon dioxide is released back to the atmosphere. A key prerequisite for fungal degradation of wood is the presence of moisture. Conversely, keeping wood dry is the most effective way to protect wood from wood degradation and for long-term binding of carbon. Wood is porous and hygroscopic; it can take up water in liquid and gaseous form, and water is released from wood through evaporation following a given water vapour pressure gradient. During the last decades, the perception of wood-water relationships changed significantly and so did the view on moisture-affected properties of wood. Among the latter is its susceptibility to fungal decay. This paper reviews findings related to wood-water relationships and their role for fungal wood decomposition. These are complex interrelationships not yet fully understood, and current knowledge gaps are therefore identified. Studies with chemically and thermally modified wood are included as examples of fungal wood substrates with altered moisture properties. Quantification and localization of capillary and cell wall water – especially in the over-hygroscopic range – is considered crucial for determining minimum moisture thresholds (MMThr) of wood-decay fungi. The limitations of the various methods and experimental set-ups to investigate wood-water relationships and their role for fungal decay are manifold. Hence, combining techniques from wood science, mycology, biotechnology and advanced analytics is expected to provide new insights and eventually a breakthrough in understanding the intricate balance between fungal decay and wood-water relations.

To document

Abstract

MicroRNAs (miRNAs) are non-protein coding RNAs of ~20–24 nucleotides in length that play an important role in many biological and metabolic processes, including the regulation of gene expression, plant growth and developmental processes, as well as responses to stress and pathogens. The aim of this study was to identify and characterize novel and conserved microRNAs expressed in methyl jasmonate-treated Scots pine needles. In addition, potential precursor sequences and target genes of the identified miRNAs were determined by alignment to the Pinus unigene set. Potential precursor sequences were identified using the miRAtool, conserved miRNA precursors were also tested for the ability to form the required stem-loop structure, and the minimal folding free energy indexes were calculated. By comparison with miRBase, 4975 annotated sequences were identified and assigned to 173 miRNA groups, belonging to a total of 60 conserved miRNA families. A total of 1029 potential novel miRNAs, grouped into 34 families were found, and 46 predicted precursor sequences were identified. A total of 136 potential target genes targeted by 28 families were identified. The majority of previously reported highly conserved plant miRNAs were identified in this study, as well as some conserved miRNAs previously reported to be monocot specific. No conserved dicot-specific miRNAs were identified. A number of potential gymnosperm or conifer specific miRNAs were found, shared among a range of conifer species.

To document

Abstract

The categorical and qualitative nature of currently available soil structural data along with the lack of a geographically broad dataset have impeded progress in understanding the development of soil structure. In this study, we assembled a soil, climate, and ecological dataset for the USA, and used it to analyze relationships between soil structure (ped type, shape, size, and grade) and exogenous and endogenous variables influencing the development of soil structure. We analyzed a subset of the National Cooperative Soil Survey (NCSS) Soil Characterization database after merging this information with climatological and ecological data. The merged and cleaned dataset contains >4400 observations from approximately 1600 pedons. We found that climate, as an exogenous factor was the most important predictor of ped shape and size. Cold and/or dry climates promoted the development of larger anisotropic peds with rougher surfaces whereas warmer and more humid climates promoted the development of finer equidimensional peds with smoother surfaces. Based on these findings, we argue that climate promotes the development of soil structure along either fragmentation or aggregation pathways. The former pathway is characterized by largely mechanical processes in cold and dry environments, whereas aggregation is promoted by predominately biological and chemical mechanisms found in warmer and wet environments. This connection between climate and the development of soil structure represents a potentially important effect of climate on a morphological property strongly linked to soil hydrology that warrants further investigation with continental-scale soil data.

To document

Abstract

Wheat dwarf virus (WDV), a mastrevirus transmitted by the leafhopper Psammotettix alienus, causes a severe disease in cereal crops. Typical symptoms of wheat plants infected by WDV are yellowing and severe dwarfing. In this present study, RNA-Seq was used to perform gene expression analysis in wheat plants in response to WDV infection. Comparative transcriptome analysis indicated that a total of 1042 differentially expressed genes (DEGs) were identified in the comparison between mock and WDV-inoculated wheat plants. Genomes ontology (GO) annotation revealed a number of DEGs associated with different biological processes, such as phytohormone metabolism, photosynthesis, DNA metabolic process, response to biotic stimulus and defense response. Among these, DEGs involved in phytohormone and photosynthesis metabolism and response pathways were further enriched and analyzed, which indicated that hormone biosynthesis, signaling and chloroplast photosynthesis-related genes might play an important role in symptom development after WDV infection. These results illustrate the dynamic nature of the wheat-WDV interaction at the transcriptome level and confirm that symptom development is a complex process, providing a solid foundation to elucidate the pathogenesis of WDV.

Abstract

This chapter emphasizes the need for active stakeholder engagement right through from strategy development to planning and implementation, to realize the benefits of sustainable bioeconomy development. In general, this varies between regions and countries. In the EU, it is considered important to engage stakeholders at all stages, whereas in developing countries engaging stakeholders so far has not been given much importance when launching new strategies. Stakeholders, including the private sector, research institutions, farmers organizations, the government and non-governmental organizations, all have important roles to play. The chapter focuses on the why, how and what type of stakeholders should be engaged, and the relevant benefits and challenges. It discusses experiences from the EU and other regions where stakeholder engagement (both formal and informal) and participative governance have led to or are necessary for successful and sustainable bioeconomy development.

Abstract

This chapter analyses the main challenges and opportunities to promote sustainable biogas technology adoption by smallholders through integrated food and energy systems (IFES), using a case study from Malonga village in the Limpopo Province of South Africa. Biogas has become attractive in recent years because of its multiple benefits and the contributions it can make to the UN SDGs. However, in Africa, its adoption remains low, due to several constraints, including: (1) water scarcity and lack of access to feedstocks; (2) high initial/upfront cost of installation and lack of investment; (3) lack of skilled labour for installation, operation and maintenance; (4) limited training facilities; (5) inadequate policy support and extension services; and (6) slow behavioural and social acceptance. Based on the information collected, integrated framework conditions that can encourage the adoption of smallholder biogas technology through IFES, were suggested. IFES will only succeed in delivering benefits, if the necessary framework conditions, such as adequate feedstock and water, training, policy support, stakeholder collaboration, credit and insurance and support services are provided. The implementation of the necessary framework conditions for biogas technology should be underpinned by conducting an integrated research study on using IFES type 2 in the context of smallholder farmers in Africa.

Abstract

This chapter focuses on ocean-land interactions and the potential for bioeconomy that offers unique opportunities to feed the increasing human population. Oceans can provide a circular bioeconomy by using increased CO2, and dissolved nutrients (P, N, Fe and other elements) in the water, leached from land-based activities. Estimates show that CO2 capture by seaweed cultivation alone can range from 1,500 to 3,000 tons per square kilometre. Ocean photosynthetic production provides more food and energy for human consumption without external inputs. This will contribute to sustainable development by providing food security and will aid the recovery of degraded ecosystems, thus directly contributing to the SDG 2 (reducing hunger) and SDG 14 (protecting life below water). Nevertheless, increasing food production from the oceans has its associated risks if the proper conditions are not met. Hence, proper coastal land use management is important as it continuously affects the nutrient flows, which in turn can lead to more serious changes in carbonate chemistry and ocean acidification. Genuine and stable partnerships, therefore, are necessary to share responsibility for environmental stewardship and to manage marine and coastal ecosystems sustainably. The chapter suggests the need for financial incentives to encourage research and innovations, support farmers associations and establish common platforms to share data and knowledge on oceans for better environmental management.

Abstract

This chapter provides a comprehensive literature review of sustainable bioeconomy development, with a focus on the definition, concepts, potential and risks involved. Countries differ on how they view bioeconomy, with some putting emphasis on sustainability and ecosystem services, while others focus on economic growth as the main goal. The literature review shows that bioeconomy is a rather new concept, at times its goals are conflicting, and its objectives are opposing. Hence, the lack of a common bioeconomy agenda and understanding across the globe will be one of the main constraints to achieve the UN Sustainable Development Goals (SDGs). However, bioeconomy brings the sustainable development discussions back onto the policy agenda, at both the national and international levels. There are sceptics who do not support