Eldrid Lein Molteberg

Research Scientist

(+47) 404 82 799
eldrid.lein.molteberg@nibio.no

Place
Apelsvoll

Visiting address
Nylinna 226, 2849 Kapp

Abstract

Important factors for development of quality defects are the physical, physiological and chemical state of the tubers, which is also described as the maturity status of the crop. The use of maturity indicators as predictors of quality in potato tubers during and after storage was explored in cvs. Asterix and Saturna with three different maturity levels during three years (2010, 2012 and 2013). The maturity indicators measured 1–3 weeks before harvest and at harvest included haulm senescence (haulm maturity), skin set (physical maturity), dry matter content (physiological maturity) and contents of sucrose, glucose and fructose (chemical maturity). Potato quality parameters were measured three times during storage (December, February and April) and included dry matter content, sucrose, glucose and fructose contents, weight loss and fry colour. Cultivar and maturity level were included as categorical predictors in a linear regression model and contributed significantly (P < 0.001) to the models predicting reducing sugars during storage. Dry matter, sucrose, glucose and fructose were included as continuous predictors in the linear regression models and contributed significantly (P < 0.01) to the sucrose, glucose and fructose models and these models explained a high proportion of the variation (R2 ≥ 0.88). Skin set contributed significantly to the weight loss models (P < 0.01) but the models showed low R2 -values (R2 < 0.48). Sucrose contents contributed significantly (P = 0.05) to the fry colour model for Asterix and the fry colour models for both Asterix and Saturna had R2 -values of 0.50 and 0.51 respectively. This study provides new information about the influence of maturity on potato quality during storage and the potential of using field measurements of maturity as predictors of storage potential for processing potato cultivars Asterix and Saturna in Norway.

Abstract

Ventilation management and the tuber maturity at harvest are essential factors in maintaining potato quality during long-term storage. The aim of this study was to examine the effect of ventilation strategy on storage quality of potato tubers with three different maturity levels at harvest. Two potato cultivars, Saturna and Asterix, were stored in small-scale experimental stores and large-scale commercial stores. Both storage categories were ventilated by both low continuous air rates (natural ventilation) and intermittent high air rates (forced ventilation). The different maturity levels were obtained by a combination of pre-sprouting strategy, planting date and level of nitrogen fertilization of the seed tubers, where pre-sprouting, early planting date and low amount of nitrogen resulted in the most mature tubers. Storage quality parameters investigated during and after long-term storage (6 months in small-scale and 4 months in large-scale stores) included weight loss, respiration, dry matter, sucrose, glucose/fructose content and fry colour. In average over three years natural ventilation resulted in higher weight losses in small- and large-scale stores (1.36 and 3.93%), lower content of reducing sugars (glucose + fructose) in large-scale stores (2.35 mg g 1) and lighter fry colour than did forced ventilation. Immature potatoes had higher weight losses (4.16%), higher respiration rates (1.68 mg CO2 kg 1 h 1) and lower dry matter content (22.3–22.5%) than more mature potatoes. This study show that both maturity and ventilation strategy affects storage quality of potatoes as measured by weight loss, sugar content and fry colour.