Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2002

To document

Abstract

Størrelse på hjemmeområde og habitatvalg for 26 hekkende kråker (Corvus corone cornix) ble registrert ved bruk av radiotelemetri i et fragmentert jord- og skogbrukslandskap i sørøst-Norge i april-juni i 1993, 1995 og 1996. Hjemmeområdet (95% minimum konveks polygon) basert på en lokalisering per dag var i gjennomsnitt 0.15 km2. Habitatsammensetningen i kråkenes hjemmeområde avvek fra habitat-sammensetningen i studieområdet, og kråkenes habitatbruk avvek fra habitat-sammensetningen i deres hjemmeområder. I begge tilfeller av habitatseleksjon rangerte kantsonen (skog < 30 m fra åpne habitat) og beitemark høyest, etterfulgt av åker, skog (>30 m fra åpne habitat) og hogstflater og plantefelt. Kråkene brukte mer tid på å sitte stille enn på å furasjere, og brukte for det meste kantsonen når den satt stille, og nesten bare beitemark og åker til å furasjere. Kråkenes bruk av kantsonen økte med økende tilgang av kantsone i hjemmeområdet, og kråkene benyttet kantsonen mer enn tilfeldig forventet så lenge kantsonen utgjorde < 40% av habitattilgangen i hjemmeområdet. Kråkenes hjemmeområde minket, når andelen av kantsone i hjemmeområdet økte. Dette antyder at en økning av andelen av kantsone mellom jordbruksmark og skog øker tettheten av hekkende kråker, og således øker predasjonsrisiko fra sittende kråker på fuglereir plassert i denne kantsonen.

To document

Abstract

The objectives of this work are; 1) to determine the diffuison coefficients of NOM by diffusivimetry. 2) to compare the results with diffusion coefficients determined by two other methods (fluorescence correlation spectroscopy (FCS) and dynamic adsorption experiments (DAM). 3) to compare molecular weights derived from the diffusion coefficients to molecular weights determined by three different ultra filtration experiments and High Perfomance Size Exclusion Chromatography (HPSEC). The diffusion coefficients determined in this work (stirred diffusion cell) are about 70% higher than determined by DAM, and agree well with diffusion coefficients determined by FCS. Molecular weights determined by HPSEC are of the same magnitude as molecular weights derived from diffusion coefficients. Molecular weights determined by ultra filtration vary considerably depending on the choice of membrane types. Membranes made of cellulose acetate generate results similar to results derived from diffusion coefficients. Membranes made of regenerated cellulose and polyether sulfone appear to retain too much NOM, resulting in artificially high molecular weights.

Abstract

To estimate the age of Norway spruce (Picea abies (L.) Karst.) logs by means of decay classes, and to assess how long it takes for downed logs to decompose, we dated logs dendrochronologically by applying 5- and 8-grade decay classification systems. Study sites were chosen in old-growth and previously selectively cut forest stands in boreal south-central Scandinavia; 113 logs were dated to the number of years since death, 120 were dated to the number of years since fall, and 61 logs were dated to both. The number of years from death to fall showed a negative exponential distribution, with a mean of 22 years and a range of 0–91 years. Decay classes of logs (8-grade scale) reflected time since fall (R2 = 0.58) better than time since death (R2 = 0.27) in a linear regression model. This result is due to the lower decomposition rate of standing snags. Therefore, the decomposition time of logs should be divided into two periods: time from death to fall, which varies considerably, and time after fall, which appears to follow a linear relationship with decay class. The model predicted that it takes 100 years after fall for downed logs to decompose completely (reaching decay class 8) in old-growth stands. Logs in selectively cut stands appeared to decompose faster (64 years), which is explained by a sample shortage of old logs resulting from previous cuttings. We conclude that the decomposition time of downed logs may be severely underestimated when data is retrospectively compiled from previously logged forest stands.