Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2017
Abstract
No abstract has been registered
Authors
Diego Faustolo Alves Bispo Marx Leandro Naves Silva Joao Jose Granate de Sa e Melo Marques Marianne Bechmann Pedro Velloso Gomes Batista Nilton CuriAbstract
Identifying and ranking nutrient loss risk areas are important steps towards integrated catchment management. This study aimed to apply the P index model at the Posses catchment, south of the state of Minas Gerais, Brazil. We applied the P index for the current land use at the Posses catchment and for two hypothetical scenarios: scenario 1, in which P fertilizer was applied to all land uses, except for native forests; and scenario 2, which considered the use of P fertilizer as in scenario 1, and that the Environmental Protection Areas referring to the riparian forests and springs were totally restored. Considering current land use, almost the whole catchment area (91.4%) displayed a low P loss risk. The highest P index was associated to croplands and eucalyptus plantations. Regarding scenario 1, areas under pasture fell into the low (15.1%), medium (45.5%), high (27.1%) and very high (12.3%) P index categories. Environmental Protection Areas on scenario 2 decreased the P loss risk from the scenario 1 in 37.6%. Hence, the model outputs indicate that the reforestation of buffer zones can decrease P loss risk in the case increasing use of P fertilizer. The P index model is a potential support tool to promote judicious use of fertilizers and conservation practices at the Posses catchment.
Authors
Bente Føreid Evengy A. Zarov Ilya M. Latysh Ilya V. Filippov Elena D. LapshinaAbstract
Exposure to sunshine is known to play a role in litter decomposition in some semi-arid areas. The aim of this study was to find out if it also plays a role in higher latitude environments in peat litter decomposition and could contribute to an explanation to the patchy nature of peat litter decomposition. Peat litter from 5 microenvironments (top of slope, bottom of slope, ridge, ryam and hollow) and put out and exposed to the sun or shaded over a summer in Western Siberia, 26 km west of the town of Khanty-Mansiysk. Afterwards the peat litter was incubated in the laboratory - at field capacity or submerged in peat water - and CO2 and methane emission measured. Chemical composition of exposed and control peat litter was also investigated using stepwise extraction. The results indicate that exposure to sunlight does increase subsequent decomposition rate in most peat litters when incubated at field capacity, but the difference between the treatments levelled off at the end of the 2 weeks incubation in most peat litter types. The total extra carbon loss was calculated to be up to about 2 mg C m− 2 over a season. When incubated submerged previous photo-exposure had less effect on CO2 evolution then when incubated at field capacity. No methane emission was recorded in any treatment. Some differences in chemical composition between exposed and shaded peat litters were found that could help explain the differences in subsequent decomposition rate. The results indicate that photodegradation could play a role in peat litter decomposition at higher latitudes when peat is disturbed and exposed to sunshine. However, the effect of photo-exposure in these areas is much smaller than observed in semi-arid areas at lower latitudes.
Authors
Jakob GeipelAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Jihong Liu Clarke Andre van Eerde Lisa Paruch Inger Heldal Hege Særvold Steen Yanliang Wang Astrid Sivertsen Sissel HaugslienAbstract
No abstract has been registered
Authors
Jihong Liu ClarkeAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Air pollution has become a global problem and affects nearly all of us. Most of the pollution is of anthropogenic origin and therefore we are obliged to improve this situation. In solving this problem basically our only partners are plants with their enormous biologically active surface area. Plants themselves are also victims of air pollution but because they are sedentary they developed very efficient defence mechanisms, which can also be exploited to improve the humanosphere. For their life processes plants require intensive gas exchange, during which air contaminants are accumulated on leaf surfaces or absorbed into the tissues. Some of the pollutants are included by plants in their own metabolism while others are sequestered. In some plant species, the processes of removing pollutants from the air is conducted in a very efficient way and therefore they are used in the environmental friendly biotechnology called phytoremediation. For urban areas, outdoor phytoremediation is recommended while indoor phytoremediation can be applied in our homes and workplaces. Because in near future purifying outdoor air to protect human health and well-being does not look the most promising, an important and increasing role will be played by indoor phytoremediation.
Abstract
Air pollution has become a global problem and affects nearly all of us. Most of the pollution is of anthropogenic origin and therefore we are obliged to improve this situation. In solving this problem basically our only partners are plants with their enormous biologically active surface area. Plants themselves are also victims of air pollution but because they are sedentary they developed very efficient defence mechanisms, which can also be exploited to improve the humanosphere. For their life processes plants require intensive gas exchange, during which air contaminants are accumulated on leaf surfaces or absorbed into the tissues. Some of the pollutants are included by plants in their own metabolism while others are sequestered. In some plant species, the processes of removing pollutants from the air is conducted in a very efficient way and therefore they are used in the environmental friendly biotechnology called phytoremediation. For urban areas, outdoor phytoremediation is recommended while indoor phytoremediation can be applied in our homes and workplaces. Because in near future purifying outdoor air to protect human health and well-being does not look the most promising, an important and increasing role will be played by indoor phytoremediation.