Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2021
Authors
Hannes Müller Schmied Denise Caceres Stephanie Eisner Martina Flörke Claudia Herbert Christoph Niemann Thedini Asali Peiris Eklavyya Popat Felix Theodor Portmann Robert Reinecke Maike Schumacher Somayeh Shadkam Camelia-Eliza Telteu Tim Trautmann Petra DöllAbstract
WaterGAP is a global hydrological model that quantifies human use of groundwater and surface water as well as water flows and water storage and thus water resources on all land areas of the Earth. Since 1996, it has served to assess water resources and water stress both historically and in the future, in particular under climate change. It has improved our understanding of continental water storage variations, with a focus on overexploitation and depletion of water resources. In this paper, we describe the most recent model version WaterGAP 2.2d, including the water use models, the linking model that computes net abstractions from groundwater and surface water and the WaterGAP Global Hydrology Model (WGHM). Standard model output variables that are freely available at a data repository are explained. In addition, the most requested model outputs, total water storage anomalies, streamflow and water use, are evaluated against observation data. Finally, we show examples of assessments of the global freshwater system that can be achieved with WaterGAP 2.2d model output.
Authors
Holger LangeAbstract
No abstract has been registered
Authors
Hui Tang Kjetil Schanke Aas Eirik Aasmo Finne Inge Althuizen Rosie A. Fisher Hans Tømmervik Ane Vollsnes Anders Bryn Sonya Rita Geange Sunniva Indrehus Vigdis Vandvik Jarle Werner Bjerke Terje Koren Berntsen Frode StordalAbstract
No abstract has been registered
Authors
Jonas De Kesel Victor Flors Uwe Conrath Víctor Flors Estrella Luna Melissa Magerøy Brigitte Mauch-Mani Victoria Pastor María J. Pozo Corné M.J. Pieterse Jurriaan Ton Tina KyndtAbstract
No abstract has been registered
Authors
Jonas De Kesel Uwe Conrath Victor Flors Estrella Luna Melissa Magerøy Brigitte Mauch-Mani Victoria Pastor María J. Pozo Corné M.J. Pieterse Jurriaan Ton Tina KyndtAbstract
No abstract has been registered
Authors
Vlado Licina Milica Fotiric-Aksic Aleksandar Simic Tore Krogstad Mekjell MelandAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Methyl jasmonate (MeJA) treatment elicits induced resistance (IR) against pests and diseases in Norway spruce (Picea abies). We recently demonstrated using mRNA-seq that this MeJA-IR is associated with both a prolonged upregulation of inducible defenses and defense priming. Gene expression can be regulated at both a transcrip-tional and post-transcriptional level by small RNAs, including microRNAs (miRNAs). Here we explore the effects of MeJA treatment and subsequent challenge by wounding on the Norway spruce miRNA transcriptome. We found clusters of prolonged down- or upregulated miRNAs as well as miRNAs whose expression was primed after MeJA treatment and subsequent wounding challenge. Differentially expressed miRNAs included miR160, miR167, miR172, miR319, and the miR482/2118 superfamily. The most prominent mRNA targets predicted to be differentially expressed by miRNA activity belonged to the nucleotide-binding site leucine-rich repeat (NBS- LRR) family. Among other predicted miRNA targets were genes regulating jasmonic acid biosynthesis. Our re-sults indicate that miRNAs have an important role in the regulation of MeJA-IR in Norway spruce.
Abstract
In a young Norway spruce stand (planted in 2012) at Hoxmark, Southeast Norway, Net Ecosystem Exchange (NEE) was measured using Eddy Covariance. The data were carefully processed with time-dependent stand parameters (i.e. canopy height), a detailed footprint analysis and calculated at 30 min temporal resolution. Photosynthetic Active Radiation (PAR) as the primary driver for carbon uptake was also available at the site. Despite its young age, the plantation already acted as a net carbon sink according to the annual NEE budget, e.g. by ca. 300 g C m-2 in 2019. However, the response of the system depended strongly on hydrometeorological conditions. We demonstrate this by investigating the relationship between NEE and PAR for this system in a temporally local fashion (30 days moving windows), using a Michaelis-Menten approach involving three parameters. Although the regression captured up to ca. 80% of the variance, the parameter estimates differed substantially throughout the season, and were contrasting between the very dry year 2018 and the close to normal year 2019. Comparison with other EC-equipped sites in a future study will clarify whether this variable sensitivity is due to the young age or is a pattern pertaining also to mature spruce stands. https://doi.org/10.5194/egusphere-egu21-5028
Abstract
No abstract has been registered