Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Biodiversity is declining globally in response to multiple human stressors, including climate forcing. Nonetheless, local diversity trends are inconsistent in some taxa, obscuring contributions of local processes to global patterns. Arctic tundra diversity, including plants, fungi, and lichens, declined during a 15-year experiment that combined warming with exclusion of large herbivores known to influence tundra vegetation composition. Tundra diversity declined regardless of experimental treatment, as background growing season temperatures rose with sea ice loss. However, diversity declined slower with large herbivores than without them. This difference was associated with an increase in effective diversity of large herbivores as formerly abundant caribou declined and muskoxen increased. Efforts that promote herbivore diversity, such as rewilding, may help mitigate impacts of warming on tundra diversity.

Abstract

LegacyNet is a voluntary network of 32 international sites, established to investigate the yield benefits of multispecies grassland leys and their legacy effects on a follow-on crop. Relatively few experiments have investigated the impact of manipulating species diversity in grassland leys within crop rotations, and fewer still have accounted for variability across environments and soil types. A common experiment is being conducted at all 32 LegacyNet sites, with 52 grassland plots of systematically varied combinations of six forage species from three functional groups (two grasses, two legumes and two herbs) being sown at each site. The plots are measured and harvested for a period of at least 18 months. After this time, grassland plots are terminated, and a follow-on crop established on each plot (retaining the same plot structure). Measurements taken during the grassland and follow-on crop stages include dry matter yield, forage quality, botanical composition, and legacy effects. In this paper, we introduce the LegacyNet international experiment, its design, and overall aims and objectives.

To document

Abstract

This chapter gathers information about the current legal requirements related to the emission of ammonia from animal housing in 24 out of the 27 EU countries and in 7 non-EU countries. Overall, the chapter shows that most of the included countries have established substantial procedures to limit ammonia emission and practically no procedures to limit greenhouse gas emission. The review can also be seen as an introduction to the substantial initiatives and decisions taken by the EU in relation to ammonia emission from animal housing, and as a notification on the absence of corresponding initiatives and decisions in relation to greenhouse gases. An EU directive on industrial emissions from 2010 and an implementation decision from 2017 are the main general instruments to reduce ammonia emission from animal housing in the EU. These treaties put limits to ammonia emissions from installations with more than 2000 places for fattening pigs, with more than 750 places for sows, and with more than 40,000 places for poultry. As an example, the upper general limit for fattening pigs is 2.6 kg ammonia per animal place per year. This chapter indicates that the important animal producing countries in the EU as well as United Kingdom have implemented the EU requirements and that a few countries including the Flemish part of Belgium, Denmark, the Netherlands, Slovakia, and Spain have introduced even stricter requirements.

To document

Abstract

Light acts as a trigger to enhance the accumulation of secondary compounds in the aboveground part of plants; however, whether a similar triggering effect occurs in roots is unclear. Using an aeroponic setup, we investigated the effect of long term exposure of roots to LED lighting of different wavelengths on the growth andp hytochemical composition of two high-value medicinal plants, Artemisia annua and Hypericum perforatum. In A. annua, root exposure to white, blue, and red light enhanced the accumulation of artemisinin in the shoots by 2.3-, 2.5-, and 1.9-fold, respectively. In H. perforatum, root exposure to white, blue, red, and green light enhanced the accumulation of coumaroylquinic acid in leaves by 89, 65, 84, and 74%, respectively. Root lighting also increased flavonol concentrations. In contrast to its effects in the shoots, root illumination did not change phytochemical composition in the roots or root exudates. Thus, root illumination induces a systemic response, resulting in modulation of the phytochemical composition in distal tissues remote from the light exposure site.

To document

Abstract

Wild berries are abundant in health-beneficial bioactive compounds, such as flavonoids, carotenoids, vitamins, and polyphenolic compounds, which accumulate during the fruit ripening process. Interestingly, wild Vaccinium berries from northern latitudes are found to contain more bioactive compounds compared to southern clones. The genetic adaptation is most likely favoured by environmental conditions, such as extended day length, cool temperatures and light spectral qualities. The molecular mechanisms underlying the regulation of secondary metabolite biosynthesis in response to light quality have been scarcely explored in Vaccinium berries. The present study is focused on gaining knowledge on the regulatory process under supplemental red and blue light in non-climacteric wild bilberry (Vaccinium myrtillus L.). Controlled experiments were carried out in phytotrons with local Norwegian ecotypes of bilberry, which were subjected from early to late ripening stages to continuous exposure to specific red and blue wavelengths provided by light-emitting diodes (LEDs). Berry samples from mid-ripening stage were utilized for the gene expression analysis based on RNA-seq transcriptome profiling. Our recent analyses from the transcriptome data set have shown that light wavelengths induce the anthocyanin biosynthetic genes, resulting in higher delphinidin accumulation in ripe bilberries. The enhanced secondary metabolic pathways influenced by such light qualities and the differential expression patterns in light-reaction centers as observed in various subunit complexes of photosystem I and II in the photosynthetic apparatus are briefly discussed in this study. This is crucial in order to study how plants acclimatize to modified light environment in terms of photosynthesis. The differences in expression of hormone signal transduction pathway genes were also discussed. The results will contribute to a better understanding of the light-mediated biosynthesis of phytochemicals in Vaccinium berries.

To document

Abstract

Lignosulphonates are water-soluble polymeric by-products from wood pulp production using sulphite pulping and can be used as soil amendments in agriculture, amongst other uses. Here, we review effects of lignosulphonates as biostimulants and in enhancing the action of fertilizers. In soils, they affect the nitrogen and phosphorous cycles, as well as acting as transporters of micronutrients. The action of tree-associated fungi can be improved, and plant growth and yield can be increased. The beneficial effects of lignosulphonates in agriculture mean that there is likely to be a market for commercial specialty lignosulphonate products.