Dario Isidro Ojeda Alayon

Senior Research Scientist

(+47) 476 33 227
dario.alayon@nibio.no

Place
Ås H8

Visiting address
Høgskoleveien 8, 1433 Ås

To document

Abstract

New mutations provide the raw material for evolution and adaptation. The distribution of fitness effects (DFE) describes the spectrum of effects of new mutations that can occur along a genome, and is, therefore, of vital interest in evolutionary biology. Recent work has uncovered striking similarities in the DFE between closely related species, prompting us to ask whether there is variation in the DFE among populations of the same species, or among species with different degrees of divergence, that is whether there is variation in the DFE at different levels of evolution. Using exome capture data from six tree species sampled across Europe we characterized the DFE for multiple species, and for each species, multiple populations, and investigated the factors potentially influencing the DFE, such as demography, population divergence, and genetic background. We find statistical support for the presence of variation in the DFE at the species level, even among relatively closely related species. However, we find very little difference at the population level, suggesting that differences in the DFE are primarily driven by deep features of species biology, and those evolutionarily recent events, such as demographic changes and local adaptation, have little impact.

To document

Abstract

The Formicoxenus genus-group comprises six genera within the tribe Crematogastrini. The group is well known for repeated evolution of social parasitism among closely related taxa and cold-adapted species with large distribution ranges in the Nearctic and Palearctic regions. Previous analyses based on nuclear markers (ultraconserved elements, UCEs) and mitochondrial genes suggest close relationship between Formicoxenus Mayr, 1855, Leptothorax Mayr, 1855 and Harpagoxenus Forel, 1893. However, scant sampling has limited phylogenetic assessment of these genera. Also, previous phylogeographic analyses of L. acervorum (Fabricius, 1793) have been limited to its West-Palearctic range of distribution, which has provided a narrow view on recolonization, population structure and existing refugia of the species. Here, we inferred the phylogenenetic history of genera within the Formicoxenus genus-group and reconstructed the phylogeography of L. acervorum with more extensive sampling. We employed three datasets, one data set consisting of whole mitochondrial genomes, and two data sets of sequences of the COI-5P (658 bp) with different number of specimens. The topologies of previous nuclear and our inferences based on mitochondrial genomes were overall congruent. Further, Formicoxenus may not be monophyletic. We found several monophyletic lineages that do not correspond to the current species described within Leptothorax, especially in the Nearctic region. We identified a monophyletic L. acervorum lineage that comprises both Nearctic and Palearctic locations. The most recent expansion within L. acervorum probably occurred within the last 0.5 Ma with isolated populations predating the Last Glacial Maximum (LGM), which are localized in at least two refugial areas (Pyrenean and Northern plateau) in the Iberian Peninsula. The patterns recovered suggest a shared glacial refugium in the Iberian Peninsula with cold-adapted trees that currently share high-altitude environments in this region.

To document

Abstract

With a wide distribution range including Europe and Asia, Lotus (Leguminosae) represents the largest genus within Loteae. It is particularly diverse in the Mediterreanean region and in the five archipelagos of Macaronesia (Atlantic Ocean). However, little is known about the relationships among the 14 sections currently recognized within Lotus and about the timing and patterns of its colonization in the Macaronesian region. In this investigation, we use four DNA regions (nuclear ribosomal ITS plus three plastid regions) in the most comprehensive sampling of Lotus species to date (some endemic species within the Canary Islands were poorly represented in previous phylogenetic analyses) to infer relationships within this genus and to establish patterns of colonization in Macaronesia. Divergence time estimates and habitat reconstruction analyses indicate that Lotus likely diverged about 7.86 Ma from its sister group, but all colonization events to Macaronesia occurred more recently (ranging from the last 0.23 to 2.70 Ma). The diversification of Lotus in Macaronesia involved between four and six independent colonization events from four sections currently distributed in Africa and Europe. A major aspect shaping the current distribution of taxa involved intra-island colonization of mainly new habitats and inter-island colonization of mostly similar habitats, with Gran Canaria and Tenerife as the major sources of diversification and of further colonization events. Section Pedrosia is the most diverse in terms of colonization events, number of species, and habitat heterogeneity, including a back-colonization event to the continent. Subsections within Pedrosia radiated into diverse habitat types recently (late Pleistocene, ca 0.23–0.29 Ma) and additional molecular markers and sampling would be necessary to understand the most recent dispersal events of this group within the Canary Islands and Cape Verde.

To document

Abstract

Pinus sylvestris (Scots pine) is the most widespread coniferous tree in the boreal forests of Eurasia, with major economic and ecological importance. However, its large and repetitive genome presents a challenge for conducting genome-wide analyses such as association studies, genetic mapping and genomic selection. We present a new 50K single-nucleotide polymorphism (SNP) genotyping array for Scots pine research, breeding and other applications. To select the SNP set, we first genotyped 480 Scots pine samples on a 407 540 SNP screening array and identified 47 712 high-quality SNPs for the final array (called ‘PiSy50k’). Here, we provide details of the design and testing, as well as allele frequency estimates from the discovery panel, functional annotation, tissue-specific expression patterns and expression level information for the SNPs or corresponding genes, when available. We validated the performance of the PiSy50k array using samples from Finland and Scotland. Overall, 39 678 (83.2%) SNPs showed low error rates (mean = 0.9%). Relatedness estimates based on array genotypes were consistent with the expected pedigrees, and the level of Mendelian error was negligible. In addition, array genotypes successfully discriminate between Scots pine populations of Finnish and Scottish origins. The PiSy50k SNP array will be a valuable tool for a wide variety of future genetic studies and forestry applications.

To document

Abstract

The complete chloroplast genome sequence of wild sea mallow Malva wigandii (=Lavatera maritima) was determined and characterized in this study. The genome is 158,162 bp long, containing a pair of inverted repeats regions (IRs) of 25,166 bp, which are separated by a large single-copy region of 86,860 bp and a small single-copy region of 20,970 bp. The sea mallow chloroplast genome has 131 known genes, including 85 protein-coding genes, eight ribosomal RNA genes, and 37 tRNA genes. The phylogenomic analysis showed that M. wigandii forms a cluster with Althaea officinalis with a strong bootstrap support and is sister to sequences belonging to the tribe Gossypieae. All of them are grouped in a lineage with other members of the subfamily Malvoideae. This newly sequenced chloroplast genome sequence provides useful genetic information to explore the origin and evolution of the Mediterranean radiation that gave rise to the generic alliance of Malva.

To document

Abstract

Phylogenomics is increasingly used to infer deep‐branching relationships while revealing the complexity of evolutionary processes such as incomplete lineage sorting, hybridization/introgression and polyploidization. We investigate the deep‐branching relationships among subfamilies of the Leguminosae (or Fabaceae), the third largest angiosperm family. Despite their ecological and economic importance, a robust phylogenetic framework for legumes based on genome‐scale sequence data is lacking. We generated alignments of 72 chloroplast genes and 7621 homologous nuclear‐encoded proteins, for 157 and 76 taxa, respectively. We analysed these with maximum likelihood, Bayesian inference, and a multispecies coalescent summary method, and evaluated support for alternative topologies across gene trees. We resolve the deepest divergences in the legume phylogeny despite lack of phylogenetic signal across all chloroplast genes and the majority of nuclear genes. Strongly supported conflict in the remainder of nuclear genes is suggestive of incomplete lineage sorting. All six subfamilies originated nearly simultaneously, suggesting that the prevailing view of some subfamilies as ‘basal’ or ‘early‐diverging’ with respect to others should be abandoned, which has important implications for understanding the evolution of legume diversity and traits. Our study highlights the limits of phylogenetic resolution in relation to rapid successive speciation.

Abstract

Pythium species are ubiquitous organisms known to be pathogens to terrestrial plants and marine algae. While several Pythium species (hereafter, Pythium) are described as pathogens to marine red algae, little is known about the pathogenicity of Pythium on marine green algae. A strain of a Pythium was isolated from a taxonomically unresolved filamentous Ulva collected in an intertidal area of Oslo fjord. Its pathogenicity to a euryhaline Ulva intestinalis collected in the same area was subsequently tested under salinities of 0, 15, and 30 parts per thousand (ppt). The Pythium isolate readily infected U. intestinalis and decimated the filaments at 0 ppt. Mycelium survived on U. intestinalis filaments for at least 2 weeks at 15 and 30 ppt, but the infection did not progress. Sporulation was not observed in the infected algal filaments at any salinity. Conversely, Pythium sporulated on infected grass pieces at 0, 15, and 30 ppt. High salinity retarded sporulation, but did not prevent it. Our Pythium isolate produced filamentous non-inflated sporangia. The sexual stage was never observed and phylogenetic analysis using internal transcribed spacer suggest this isolate belongs to the clade B2. We conclude that the Pythium found in the Oslo fjord was a pathogen of U. intestinalis under low salinity.

To document

Abstract

Paleo-environmental data show that the distribution of African rain forests was affected by Quaternary climate changes. In particular, the Dahomey Gap (DG) – a 200 km wide savanna corridor currently separating the West African and Central African rain forest blocks and containing relict rain forest fragments – was forested during the mid-Holocene and possibly during previous interglacial periods, whereas it was dominated by open vegetation (savanna) during glacial periods. Genetic signatures of past population fragmentation and demographic changes have been found in some African forest plant species using nuclear markers, but such events appear not to have been synchronous or shared across species. To better understand the colonization history of the DG by rain forest trees through seed dispersal, the plastid genomes of two widespread African forest legume trees, Anthonotha macrophylla and Distemonanthus benthamianus, were sequenced in 47 individuals for each species, providing unprecedented phylogenetic resolution of their maternal lineages (857 and 115 SNPs, respectively). Both species exhibit distinct lineages separating three regions: 1. Upper Guinea (UG, i.e. the West African forest block), 2. the area ranging from the DG to the Cameroon volcanic line (CVL), and 3. Lower Guinea (LG, the western part of the Central African forest block) where three lineages co-occur. In both species, the DG populations (including southern Nigeria west of Cross River) exhibit much lower genetic diversity than UG and LG populations, and their plastid lineages originate from the CVL, confirming the role of the CVL as an ancient forest refuge. Despite the similar phylogeographic structures displayed by A. macrophylla and D. benthamianus, molecular dating indicates very contrasting ages of lineage divergence (UG diverged from LG since c. 7 Ma and 0.7 Ma, respectively) and DG colonization (probably following the Mid Pleistocene Transition and the Last Glacial Maximum, respectively). The stability of forest refuge areas and repeated similar forest shrinking/expanding events during successive glacial periods might explain why similar phylogeographic patterns can be generated over contrasting timescales.

To document

Abstract

Aim: The Guineo‐Congolian region in Africa constitutes the second largest area of tropical rainforest (TRF) in the world. It covered an estimated 15–22 million km2 during the late Miocene (55–11 Ma) and it has experienced since a declining trend, currently reaching 3.4 million km2, associated with increasing aridification and the replacement of TRF by savanna habitats. Here, we examine whether rainforest area contraction led to a decrease in net diversification rates linked to increasing extinction, or if it is associated with increasing opportunities for allopatric or ecological speciation during periods of forest fragmentation. Location: Tropical Africa, Guineo‐Congolian region. Taxon: Anthonotha, Englerodendron, Berlinia clade (Leguminosae). Methods: We used a target enrichment approach combined with a complete data set representing all genera within the Berlinia clade. We combined phylogenomic, dating estimates, habitat reconstruction and diversification rate analyses to infer the effect of change in rainforest area coverage at two taxonomic levels: among genera, and within Anthonotha and Englerodendron. Results: We recovered fully resolved and well‐supported relationships among all genera and among species within the two genera. Most genera (87.5%) diverged before the Pleistocene, but Anthonotha and Englerodendron diversified recently, during the most recent cycles of forest contraction and expansion of the Pleistocene. Main conclusions: Our results suggest that the Berlinia clade displays an overall trend of accumulation of species over evolutionary time, suggesting the reduction in TRF area has not decreased net diversification rates. Most habitat shifts to savanna occurred in the Miocene, with no major habitat shifts during the most recent phases of forest expansion–contraction in the Pleistocene. Shifts in habitat from lowland forest to savanna did not trigger diversification rates, but habitat fragmentation might have increased diversification rates through allopatric speciation.

To document

Abstract

The consequences of the Cretaceous–Paleogene (K–Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs during early legume evolution using gene tree reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 36 nuclear genes selected as informative and evolving in an approximately clock-like fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. Results suggest either a pan-legume WGD event on the stem lineage of the family, or an allopolyploid event involving (some of) the earliest lineages within the crown group, with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. Gene tree reconciliation methods that do not account for allopolyploidy may be misleading in inferring an earlier WGD event at the time of divergence of the two parental lineages of the polyploid, suggesting that the allopolyploid scenario is more likely. We show that the crown age of the legumes dates to the Maastrichtian or early Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic. [Allopolyploidy; Cretaceous–Paleogene (K–Pg) boundary; Fabaceae, Leguminosae; paleopolyploidy; phylogenomics; whole genome duplication events]

To document

Abstract

With the ongoing climate change, African rainforests are expected to experience severe drought events in the future. In Africa, the tropical genus Erythrophleum (Fabaceae) includes two forest sister timber tree species displaying contrasting geographical distributions. Erythrophleum ivorense is adapted to wet evergreen Guineo-Congolian forests, whereas E. suaveolens occurs in a wider range of climates, being found in moist dense forests but also in gallery forests under a relatively drier climate. This geographical distribution pattern suggests that the two species might cope differently to drought at the genomic level. Yet, the genetic basis of tolerance response to drought stress in both species is still uncharacterized. To bridge this gap, we performed an RNA-seq approach on seedlings from each species to monitor their transcriptional responses at different levels of drought stress (0, 2 and 6 weeks after stopping watering seedlings). Monitoring of wilting symptoms revealed that E. suaveolens displayed an earlier phenotypic response to drought stress than E. ivorense. At the transcriptomic level, results revealed 2020 (1204 down-regulated/816 up-regulated) and 1495 differentially expressed genes (DEGs) in response to drought stress from a total of 67,432 and 66,605 contigs assembled in E. ivorense and E. suaveolens, respectively. After identifying 30,374 orthologs between species, we found that only 7 of them were DEGs shared between species, while 587 and 458 were differentially expressed only in E. ivorense or E. suaveolens, respectively. GO and KEGG enrichment analysis revealed that the two species differ in terms of significantly regulated pathways as well as the number and expression profile of DEGs (Up/Down) associated with each pathway in the two stress stages. Our results suggested that the two studied species react differently to drought. E. suaveolens seems displaying a prompt response to drought at its early stage strengthened by the down-regulation of many DEGs encoding for signaling and metabolism-related pathways. A considerable up-regulation of these pathways was also found in E. ivorense at the late stage of drought, suggesting this species may be a late responder. Overall, our data may serve as basis for further understanding the genetic control of drought tolerance in tropical trees and favor the selection of crucial genes for genetically enhancing drought resistance.

To document

Abstract

Early detection provides the best way to prevent introduction and establishment of alien plant pathogens. Amplification of DNA by PCR has revolutionized the detection and monitoring of plant pathogens. Most of those assays rely on the amplification of a fraction of the genome of the targeted species. With the availability of whole genomes for a growing number of fungi and oomycetes it is becoming possible to compare genomes and discover regions that are unique to a target organism. This study has applied this pipeline to develop a set of hierarchical TaqMan real‐time PCR detection assays targeting DNA of all four Phytophthora ramorum lineages, and a closely related species, P. lateralis. Nine assays were generated: three targeting DNA of all P. ramorum lineages, one for each lineage of P. ramorum, one for P. lateralis and one targeting DNA of P. ramorum and P. lateralis. These assays were very accurate and sensitive, ranging from 98.7% to 100% detection accuracy of 2–10 gene copies of the targeted taxa from pure cultures or inoculated tissues. This level of sensitivity is within the lowest theoretical limit of detection of DNA. It is expected that these assays will be useful because of their high level of specificity and the ease with which they can be multiplexed because of the inherent flexibility in primer and probe design afforded by their lack of conservation in non‐target species.

To document

Abstract

Detarioideae is well known for its high diversity of floral traits, including flower symmetry, number of organs, and petal size and morphology. This diversity has been characterized and studied at higher taxonomic levels, but limited analyses have been performed among closely related genera with contrasting floral traits due to the lack of fully resolved phylogenetic relationships. Here, we used four representative transcriptomes to develop an exome capture (target enrichment) bait for the entire subfamily and applied it to the Anthonotha clade using a complete data set (61 specimens) representing all extant floral diversity. Our phylogenetic analyses recovered congruent topologies using ML and Bayesian methods. Anthonotha was recovered as monophyletic contrary to the remaining three genera (Englerodendron, Isomacrolobium and Pseudomacrolobium), which form a monophyletic group sister to Anthonotha. We inferred a total of 35 transitions for the seven floral traits (pertaining to flower symmetry, petals, stamens and staminodes) that we analyzed, suggesting that at least 30% of the species in this group display transitions from the ancestral condition reconstructed for the Anthonotha clade. The main transitions were towards a reduction in the number of organs (petals, stamens and staminodes). Despite the high number of transitions, our analyses indicate that the seven characters are evolving independently in these lineages. Petal morphology is the most labile floral trait with a total of seven independent transitions in number and seven independent transitions to modification in petal types. The diverse petal morphology along the dorsoventral axis of symmetry within the flower is not associated with differences at the micromorphology of petal surface, suggesting that in this group all petals within the flower might possess the same petal identity at the molecular level. Our results provide a solid evolutionary framework for further detailed analyses of the molecular basis of petal identity.

To document

Abstract

On the basis of a new phylogeny of the Detarioideae, with a particular focus on Englerodendron Harms, Anthonotha P.Beauv. and related genera, the possible options for delimiting monophyletic genera are discussed. As a result, Isomacrolobium Aubrév. & Pellegr. and Pseudomacrolobium Hauman are synonymised under Englerodendron. The following 12 new combinations are formed within the expanded Englerodendron: E. brachyrhachis (Breteler) Estrella & Ojeda, E. explicans (Baill.) Estrella & Ojeda, E. graciliflorum (Harms) Estrella & Ojeda, E. hallei (Aubrév.) Estrella & Ojeda, E. isopetalum (Harms) Breteler & Wieringa, E. lebrunii (J.Léonard) Estrella & Ojeda, E. leptorrhachis (Harms) Estrella & Ojeda, E. mengei (De Wild.) Estrella & Ojeda, E. nigericum (Baker f.) Estrella & Ojeda, E. obanense (Baker f.) Estrella & Ojeda, E. triplisomere (Pellegr.) Estrella & Ojeda and E. vignei (Hoyle) Estrella & Ojeda. A key to identification of the 17 species now recognised within Englerodendron is presented.

To document

Abstract

Compared to angiosperms, gymnosperms lag behind in the availability of assembled and annotated genomes. Most genomic analyses in gymnosperms, especially conifer tree species, rely on the use of de novo assembled transcriptomes. However, the level of allelic redundancy and transcript fragmentation in these assembled transcriptomes, and their effect on downstream applications have not been fully investigated. Here, we assessed three assembly strategies for short-reads data, including the utility of haploid megagametophyte tissue during de novo assembly as single-allele guides, for six individuals and five different tissues in Pinus sylvestris. We then contrasted haploid and diploid tissue genotype calls obtained from the assembled transcriptomes to evaluate the extent of paralog mapping. The use of the haploid tissue during assembly increased its completeness without reducing the number of assembled transcripts. Our results suggest that current strategies that rely on available genomic resources as guidance to minimize allelic redundancy are less effective than the application of strategies that cluster redundant assembled transcripts. The strategy yielding the lowest levels of allelic redundancy among the assembled transcriptomes assessed here was the generation of SuperTranscripts with Lace followed by CD-HIT clustering. However, we still observed some levels of heterozygosity (multiple gene fragments per transcript reflecting allelic redundancy) in this assembled transcriptome on the haploid tissue, indicating that further filtering is required before using these assemblies for downstream applications. We discuss the influence of allelic redundancy when these reference transcriptomes are used to select regions for probe design of exome capture baits and for estimation of population genetic diversity.