Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2007

Sammendrag

In Norway exterior wood structures have traditionally nearly exclusively been made of treated and untreated Picea abies and Pinus sylvestris. In recent years there has been a tendency that other tree species, like various domestic hardwoods and imported species have been used in exterior above ground applications, often unfinished. For several wood species, especially hardwoods, information regarding the durability in use class 3 is lacking. The main objective of this paper is to evaluate natural durability of Norwegian wood species for above ground applications comparing two non-standard above ground tests with the European standard tests for soil contact (EN 252) and lab performance against basidiomycetes (EN 113). The European standard tests EN 113 and EN 252 gave quite similar results, and they also corresponded well with the natural durability classification in EN 350-2. The two non-standard above ground tests differed to some extend from EN 113, EN 252 and EN 350-2. The results indicate that natural durability classification for one single wood species can change depending on use class. However, the field trials need a longer period of time before a final classification can be performed. Four species not included in EN 350-2 were classified in this study: Juniperus communis (1), Salix caprea (5), Sorbus aucuparia (5) and Populus tremula (5).

Sammendrag

De nordiske treslagene er generelt ikke regnet som spesielt holdbare mot biologisk nedbrytning. I et kaldt og temperert klima kan tre likevel ha lang levetid om det behandles og brukes riktig. Etter at det ble lagt restriksjoner på bruken av CCA, og fordi vi trolig også vil få restriksjoner i bruk av kobber, har fokus på å finne nye alternative og mer miljøvennlige midler og metoder for trebeskyttelse økt de siste årene.

Sammendrag

The area of wood protection is in a period of change. New tools are needed to understand the mode of action, and to further improve the new wood protection systems. A set of useful tools are found among the molecular methods. This paper presents an overview of some of the tools available, and the methods are exemplified by papers within the frame of wood protection issues. However, there is still a great unexplored potential within the field of wood protection by the use of various molecular methods. The majority of the work using molecular methods has been performed on species identification issues and within species variation. This paper lists some new promising molecular methods for wood protection issues and a presentation of a new project. The new project will help to gain some new knowledge about how the fungal decay processes are affected by different wood modification systems.

Til dokument

Sammendrag

Universitetet for miljø- og biovitenskap fikk i mai 2007 i oppdrag fra Norges Forskningsråd å kartlegge og beskrive kunnskapsstatus og forskningsbehov knyttet til bioenergi og klimagasser fra landbruket (jord, skog og utmark). Utredningen beskriver i korte trekk dagens status og hovedutfordringer når det gjelder produksjon av bioenergi og utslipp/binding av klimagasser i landbruket, og peker på sentrale forskningsbehov og forskningsoppgaver som kan bidra til å møte disse utfordringene. Rapporten er basert på bidrag fra forskningsmiljøene på Campus Ås.

2006

Sammendrag

The aim of this study was to compare two methods for non-destructive strength testing of wood by the use of dynamic modulus of elasticity (MOEdyn). The two methods are based on resonant vibration excitation and ultrasonic pulse excitation. Sound Pinus sylvestris L. sapwood samples treated with two copper-containing wood preservatives and two chitosan solutions were evaluated at two moisture levels. There was a significant correlation between the measurements given by the two MOEdyn test devices. An analysis of variance showed significant differences between the different treatments and between different moisture levels. Potential use of the non-destructive MOEdyn methods in durability testing is discussed.

Sammendrag

There is a high correlation between methods for dynamic modulus of elasticity (MOEdyn) and static modulus of elasticity (MOEstat). MOEdyn methods have been found sensitive to detect early stages of decay and may be seen as an option for non-destructive wood durability testing.As the MOEstat measurements do not change after reaching the fibre saturation point, the uncorrected MOEdyn data from ultrasonic pulse excitation method provides increasin values after fibre saturation. This is due to the effect of free water in the cell lumen on ultrasonic waves. The aim of this study was to make a moisture calibration for the MOEdyn ultrasonic pulse excitation method using Scots pine (Pinus sylvestris L.) sapwood samples.MOE was measured at five different moisture levels. Three different MOE test methods were used: MOEdyn using ultrasound and vibration excitation and the traditional MOEstat. Sound Scots pine sapwood samples treated with two copper-containing wood preservatives and two chitosan solutions were evaluated, using untreated sapwood samples as control.In this study a correction value (\"k\") was calculated based on data from different moisture levels for water saturated samples using four different wood treatments and control. By measuring MOEdyn ultrasonic at wood moisture contents just below fibre saturation point, a minor effect of incipient water accumulation in the wood matrix was detected.Wood treatments influence the \"k\" value, and a \"k\" value needs to be calculated for all wood treatments when measuring MOEdyn ultrasound above fibre saturation. All the three MOE test methods in this study are applicable for all wood moisture levels as long as a \"k\" value is calculated for MOEdyn ultrasound above fibre saturation.

Sammendrag

A method for quantitative determination of extractives from heartwood of Scots pine (Pinus sylvestris L.) using gas chromatography (GC) with flame ionization detection (FID) was developed. The limit of detection (LOD) was 0.03mg/g wood and the linear range (r=0.9994) was up to 10mg/g with accuracy within ±10% and precision of 18% relative standard deviation. The identification of the extractives was performed using gas chromatography combined with mass spectrometry (GC–MS). The yields of extraction by Soxhlet were tested for solid wood, small particles and fine powder. Small particles were chosen for further analysis. This treatment gave good yields of the most important extractives: pinosylvin, pinosylvin monomethyl ether, resin acids and free fatty acids. The method is used to demonstrate the variation of these extractives across stems and differences in north–south direction.

Sammendrag

When using chitosan as an antifungal agent in wood it is important to understand which factors contribute to a higher fixation ratio to optimize the utilization of chitosan, the active component. Small pine samples were impregnated with chitosan solutions varying in molecular weight, concentration, pH, polymerization agent, acid and degree of deacetylation. Different post-treatments such as time, temperature, moisture content and the effect of present air were applied to the samples to evaluate the effect on the relative retention. After impregnation, the samples, with a volume of 1.5 cm3, were leached in separate test-tubes according to EN-84. The samples were prepared in a paired design where both samples were impregnated, but only one was leached. Both leached and unleached samples were analysed for their chitosan content, and the relative ratio was used as a measure for the relative retention of chitosan during leaching. The results from these trials show that pH in the range of 5.1-5.9 is favourable. The molecular weight should be as high as possible yet able to penetrate the wood structure, and the use of acetic acid gives far better fixation than the use of hydrochloric acid.