Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Future development of bioeconomy is expected to change land use in the Nordic countries in agriculture and forestry. The changes are likely to affect water quality due to changes in nutrient run-off. To explore possible future land-use changes and their environmental impact, stakeholders and experts from four Nordic countries (Denmark, Finland, Norway and Sweden) were consulted. The methodological framework for the consultation was to identify a set of relevant land-use attributes for agriculture and forestry, e.g. tillage conservation effort, fertiliser use, animal husbandry, biogas production from manure, forestry management options, and implementation of mitigation measures, including protection of sensitive areas. The stakeholders and experts provided their opinions on how these attributes might change in terms of their environmental impacts on water quality given five Nordic bioeconomic scenarios (sustainability, business as usual, self-sufficiency, cities first and maximizing economic growth). A compilation methodology was developed to allow comparing and merging the stakeholder and expert opinions for each attribute and scenario. The compiled opinions for agriculture and forestry suggest that the business-as-usual scenario may slightly decrease the current environmental impact for most attributes due to new technologies, but that the sustainability scenario would be the only option to achieve a clear environmental improvement. In contrast, for the self-sufficiency scenario, as well as the maximum growth scenario, a deterioration of the environment and water quality was expected for most of the attributes. The results from the stakeholder consultations are used as inputs to models for estimating the impact of the land-use attributes and scenarios on nutrient run-off from catchments in the Nordic countries (as reported in other papers in this special issue). Furthermore, these results will facilitate policy level discussions concerning how to facilitate the shift to bioeconomy with increasing biomass exploitation without deteriorating water quality and ecological status in Nordic rivers and lakes.

Til dokument

Sammendrag

This paper synthesizes a five-year project (BIOWATER) that assessed the effects of a developing bioeconomy on Nordic freshwaters. We used a catchment perspective and combined several approaches: comparative analyses of long-term data sets from well-monitored catchments (agricultural, with forestry, and near pristine) across Fennoscandia, catchment biogeochemical modelling and ecosystem services assessment for integration. Various mitigation measures were also studied. Benchmark Shared Socio-economic Pathways were downscaled and articulated in dialogue with national stakeholder representatives leading to five Nordic Bioeconomy Pathways (NBPs) describing plausible but different trajectories of societal development towards 2050.These were then used for catchment modelling and ecosystem service assessment. Key findings from the work synthesized here are: (a) The monitoring results from 69 catchments demonstrate that agricultural lands exported an order of magnitude more nutrients than natural catchments (medians 44 vs 4 kg P km−2 y-1 and 1450 vs 139 kg N km−2 y-1) whilst forests were intermediate (7 kg P km−2 y-1 and 200 kg N km−2 y-1). (b) Our contrasting scenarios led to substantial differences in land use patterns, which affected river flow as well as nutrient loads in two of the four modelled catchments (Danish Odense Å and Norwegian Skuterud), but not in two others (Swedish catchment C6 and Finnish Simojoki). (c) Strongly contrasting scenarios (NBP1 maximizing resource circularity versus NBP5 maximizing short-term profit) were found to lead to similar monetary estimates of total societal benefits, though for different underlying reasons – a pattern similar across the six studied Nordic catchments. (d) The ecological status of small to medium sized rivers in agricultural landscapes benefitted greatly from an increase in riparian forest cover from 10 % to 60 %. Riparian buffer strips, constructed wetlands, rewetting of ditched peatlands, and similar nature-based solutions optimize natural biogeochemical processes and thus can help in mitigating negative impacts of intensified biomass removal on water quality.

Til dokument

Sammendrag

Wastewater (WW) has been identified as a major hotspot of microbial emerging contaminants (MECs), such as antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Currently used WW treatment methods cannot efficiently eliminate these pollutants, resulting in passive contamination of adjacent environments receiving undertreated discharge. More effective WW treatment strategies are therefore urgently required. In this study, newly developed and well-characterised semi-interpenetrating polymer network (semi-IPN) hydrogels derived from the valorisation of marine wastes (e.g., shrimp shells) were investigated for their ARG removal potential. The results indicated that multiple ARGs prevalent in WW, such as ermB, qrnS, sul1 and tetO, were removed by up to 100% after being treated by novel hydrogels. In terms of horizontal gene transfer-associated genetic elements, such as integron-1 intl1, transposons tnpA1 (IS4 group) and tnpA2 (IS6 group), substantial reduction approaching 99.9% was also achieved. Moreover, up to 97% of efflux pump-associated qacE∆1 conferring multidrug resistance (MR) was successfully attenuated. To conclude, the semi-INP hydrogels developed exhibited great potential for ARG mitigation towards strengthening WW decontamination, which provides a viable, cost-effective and environmentally friendly novel treatment approach.

Til dokument

Sammendrag

The present work aims to study the influence of ammonium-quaternary monomers and chitosan, obtained from different sources, upon the effect of semi-interpenetrating polymer network (semi-IPN) hydrogels upon the removal of waterborne pathogens and bacteria from wastewater. To this end, the study was focused on using vinyl benzyl trimethylammonium chloride (VBTAC), a water-soluble monomer with known antibacterial properties, and mineral-enriched chitosan extracted from shrimp shells, to prepare the semi-IPNs. By using chitosan, which still contains the native minerals (mainly calcium carbonate), the study intends to justify that the stability and efficiency of the semi-IPN bactericidal devices can be modified and better improved. The new semi-IPNs were characterized for composition, thermal stability and morphology using well-known methods. Swelling degree (SD%) and the bactericidal effect assessed using molecular methods revealed that hydrogels made of chitosan derived from shrimp shell demonstrated the most competitive and promising potential for wastewater (WW) treatment.

Sammendrag

Rapporten sammenstiller skogbrukets påvirkning på vannressursene basert på et begrenset litteratursøk. I tillegg gis informasjon om relevant lovverk, tilskuddsordninger og aktuelle bestemmelser i skogbrukets egen sertifiseringsordning. Målgruppen for rapporten er først og fremst vannforvaltningen i Norge, men den kan ha interesse også for skogbrukssektoren. En foreløpig konklusjon basert på den litteraturen som er gjennomgått er at skogbruket kan påvirke vassdragenes hydrologi, løpsmønster, sedimenttransport, vannkvalitet og økologi. Virkningen av skogbruk er tydeligst på lokalt nivå, i små nedbørfelt, og blir ofte mindre synlig lenger nedstrøms i vassdraget, men vi vet lite om langtidsvirkninger både lokalt og i nedstrøms resipienter. Det er generelt lite av både data og litteratur om konsekvenser av skogsdrift på vannressursene i Norge, og det anbefales derfor å igangsette flere undersøkelser.

Sammendrag

swap is an R-package designed to help interface and work with SWAP4 model. It consists of a variety of functions that assist the user in otherwise tedious and repetitive tasks.

Til dokument

Sammendrag

NIBIO (Norsk institutt for bioøkonomi), Norsk institutt for vannforskning (NIVA) og NGI (Norges Geotekniske Institutt) har på oppdrag fra Miljødirektoratet utarbeidet faktagrunnlag for sigevann fra deponier. Faktagrunnlaget er tenkt å være til hjelp for saksbehandlere hos forurensningsmyndighetene for vurdering og regulering av sigevannsutslipp fra deponier. I tillegg skal det være et faglig grunnlag for deponieiere og konsulenter som jobber med dette temaet. Rapporten omfatter følgende temaer: • Avfallsfraksjoner og forventet sigevannssammensetning • Vurdering av sigevannets påvirkning på resipienter • Dagens praksis for håndtering av sigevann • Overvåkning av sigevannsutslipp Basert på dagens faktagrunnlag og gjeldende rammebetingelser har prosjektgruppen kommet fram til et forslag for vurderinger i forbindelse med utslipp av sigevann.