Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Climate change has had a significant impact on the tourism industry in many countries, leading to changes in policies and adaptations to attract more visitors. However, there are few studies on the effects of climate change on Sri Lanka’s tourism industry and income, despite its importance as a destination for tourists. A study was conducted to analyze the holiday climate index (HCI) for Sri Lanka’s urban and beach destinations to address this gap. The analysis covered historical years (2010–2018) and forecasted climatic scenarios (2021–2050 and 2071–2100), and the results were presented as colored maps to highlight the importance of HCI scores. Visual analysis showed some correlation between HCI scores and tourist arrivals, but the result of the overall correlation analysis was not significant. However, a country-specific correlation analysis revealed interesting findings, indicating that the changing climate can be considered among other factors that impact tourist arrivals. The research proposes that authorities assess the outcomes of the study and conduct further research to develop adaptive plans for Sri Lanka’s future tourism industry. The study also investigated potential scenarios for beach and urban destinations under two climate scenarios (RCP 4.5 and RCP 8.5) for the near and far future, presenting the findings to tourism industry stakeholders for any necessary policy changes. As Sri Lanka expects more Chinese visitors in the future due to ongoing development projects, this study could be valuable for policymakers and industry stakeholders when adapting to changing climate and future tourist behavior. While more research is needed to fully understand the effects of climate change on Sri Lanka’s tourism industry, this study serves as a starting point for future investigations.

Til dokument

Sammendrag

BACKGROUND Integrated pest management (IPM) has a long history in fruit production and has become even more important with the implementation of the EU directive 2009/128/EC making IPM mandatory. In this study, we surveyed 30 apple orchards in Norway for 3 years (2016–2018) monitoring pest- and beneficial arthropods as well as evaluating fruit damage. We obtained growers’ diaries of pest management and used these data to study positive and negative correlations of pesticides with the different arthropod groups and damage due to pests. RESULTS IPM level had no significant effects on damage of harvested apples by arthropod pests. Furthermore, damage by arthropods was mainly caused by lepidopteran larvae, tortricids being especially important. The number of insecticide applications varied between 0 and 3 per year (mean 0.8), while acaricide applications varied between 0 and 1 per year (mean 0.06). Applications were often based on forecasts of important pest species such as the apple fruit moth (Argyresthia conjugella). Narrow-spectrum insecticides were commonly used against aphids and lepidopteran larvae, although broad-spectrum neonicotinoid (thiacloprid) insecticides were also applied. Anthocorid bugs and phytoseiid mites were the most abundant natural enemies in the studied orchards. However, we found large differences in abundance of various “beneficials” (e.g., lacewings, anthocorids, parasitic wasps) between eastern and western Norway. A low level of IPM negatively affected the abundance of spiders. CONCLUSION Lepidoptera was found to be the most important pest group in apple orchards. Insecticide use was overall low, but number of spray applications and use of broad-spectrum insecticides varied between growers and regions. IPM level did not predict the level of fruit damage by insects nor the abundance of important pests or most beneficial groups in an apple orchard. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Til dokument

Sammendrag

Phenolic compounds constitute one of the most important groups of the bioactive molecules in food plants. These compounds have received attention for their beneficial properties for human health and they also are involved in diverse important roles in plants, including signaling and defense against biotic and abiotic stress factors. Vaccinium berries are one of the richest sources of phenolic compounds of which flavonoid classes of anthocyanins, proanthocyanidins, flavonols in addition to hydroxycinnamic acids are the main phenolics in these species. Besides in berries, phenolic compounds are also present in other parts of the plant. Biosynthesis of flavonoids via the phenylpropanoid pathway is well understood and the key enzymes leading to different intermediates or different flavonoid classes have been characterized in many species including wild and cultivated Vaccinium species. At the molecular level, the biosynthesis is regulated via co-ordinated transcriptional control of the enzymes in the pathway by the interaction with transcription factors of the MYB-bHLH-WD40 (MBW) complex. Upstream regulators of the pathway have also been identified. The biosynthesis is controlled both at the level as well as by the surrounding environmental factors. Plant hormones are the key players in the development and the ripening process of the fruits. Especially abscisic acid (ABA) and methyl jasmonate (MeJA) have been shown to have a key role in the flavonoid metabolism of Vaccinium species. Accumulation of transcriptome, genome and metabolome data are currently increasing our understanding on the complicated regulation networks controlling the metabolism of the phenolic compounds in the Vaccinium species. This offers new tools for selection of the species and cultivars with preferred characteristics, for instance berries with higher health benefit potential or plants with better stress resistance.

Til dokument

Sammendrag

The Formicoxenus genus-group comprises six genera within the tribe Crematogastrini. The group is well known for repeated evolution of social parasitism among closely related taxa and cold-adapted species with large distribution ranges in the Nearctic and Palearctic regions. Previous analyses based on nuclear markers (ultraconserved elements, UCEs) and mitochondrial genes suggest close relationship between Formicoxenus Mayr, 1855, Leptothorax Mayr, 1855 and Harpagoxenus Forel, 1893. However, scant sampling has limited phylogenetic assessment of these genera. Also, previous phylogeographic analyses of L. acervorum (Fabricius, 1793) have been limited to its West-Palearctic range of distribution, which has provided a narrow view on recolonization, population structure and existing refugia of the species. Here, we inferred the phylogenenetic history of genera within the Formicoxenus genus-group and reconstructed the phylogeography of L. acervorum with more extensive sampling. We employed three datasets, one data set consisting of whole mitochondrial genomes, and two data sets of sequences of the COI-5P (658 bp) with different number of specimens. The topologies of previous nuclear and our inferences based on mitochondrial genomes were overall congruent. Further, Formicoxenus may not be monophyletic. We found several monophyletic lineages that do not correspond to the current species described within Leptothorax, especially in the Nearctic region. We identified a monophyletic L. acervorum lineage that comprises both Nearctic and Palearctic locations. The most recent expansion within L. acervorum probably occurred within the last 0.5 Ma with isolated populations predating the Last Glacial Maximum (LGM), which are localized in at least two refugial areas (Pyrenean and Northern plateau) in the Iberian Peninsula. The patterns recovered suggest a shared glacial refugium in the Iberian Peninsula with cold-adapted trees that currently share high-altitude environments in this region.

Til dokument

Sammendrag

The efficacy of currently available fungicides against apple scab, caused by the fungal pathogen Venturia inaequalis, was investigated in relation to when growers spray (ahead, during, or after rain) and how the spray reaches the target. The adaxial surface of individual leaves of potted trees were sprayed and then inoculated with ascospores of V. inaequalis, to establish dose-response curves for each fungicide. Discriminatory doses providing 50 and 90% symptom inhibition (EC50 and EC90, respectively) in sprays mimicking applications ahead of rain were used for experiments imitating alternative spray timings. Sprays were either applied during the spore germination phase or early or late after infection onset (either 336 or 672 degree-hours after inoculation, respectively), corresponding to grower spray schedules. Experiments were also carried out with sprays applied on the abaxial leaf surface to investigate fungicide efficacy through the leaf lamina. For all fungicides, the best efficacy was observed when sprays were applied during germination, followed by applications ahead of inoculation. Some products maintained equal or better efficacy at early infection, while efficacy in late infection dropped for all products, clearly indicating that this spray timing should be avoided. Some products with postinfection efficacy also showed translaminar efficacy. The close relationship found between EC50 of the active ingredients on potted trees and the label rate could help improve spraying decisions and reduce costs.