Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

In the anaerobic digestion (AD) process, the effects of humic acid (HA) derived from different feedstocks on AD are influenced by the variations in their structural composition and oxygen-containing functional groups. Thus, clarifying the structural differences of HA obtained from different feedstocks is crucial for understanding their impact on AD. In this study, the structure of five humic acids (HAs) derived from liquid digestate, food waste, silage corn straw, lignite and commercial HA, and their effects on AD were investigated. The study found that HA from food waste had more carboxyl groups, while straw-derived HA had more phenolic hydroxyl groups. Both types of HA had higher aromaticity and humification degree and showed significant inhibition effect on AD. HA from food waste had an average methanogenic inhibition rate of 43.5 % with 1 g/L HA added. In addition, commercial HA and HA derived from lignite had similar functional group types and aromaticity, with an average methanogenic inhibition rate of about 20 %. The study revealed that HAs with more carboxyl groups exhibited greater effectiveness in inhibiting AD, thereby confirming the influence of HA structures derived from different feedstocks on AD. In conclusion, this study provides valuable insights into the mechanism of HA effect on AD and offers guidance for future research focused on enhancing AD efficiency.

To document

Abstract

The treatment of organic waste (OW) by anaerobic digestion (AD) conforms to the concept of sustainable development. But AD is facing the issue of low conversion rate. In this work, the photo-AD system using visible light (LED lamp) as the source was constructed and the performances and mechanism of N-doped carbon quantum dots (NCQD) were explored in the system for the first time. The results showed that 0.5 g/L NCQD promoted a 23.1 % increase in cumulative CH4 yield in the photo-AD system. Microbial analysis results showed that in photo-AD with NCQD, the dominant strain was Methanosarciniales, with an abundance of 69.0 %. Microbial activity and structural integrity tests showed that the microorganisms were not damaged by free radicals. In addition, NCQD increased the redox peak intensity of the CV curve and increased photocurrent intensity of photo-AD. Furthermore, it promoted an increase of 18.2 % (0.26 ± 0.03 μmol/mL) in ATP concentration. The photoelectrochemical analysis and quantitative analysis of functional genes results indicated that NCQD mainly promoted methanogenesis by providing photoelectrons. This promotion mechanism increased the copynumber (61,652.8 g−1) of EchA in photo-AD, rather than Vht and Hdr related to cytochrome. This work provided new strategies for the enhancement of AD and clarified potential mechanisms.

To document

Abstract

Industrial-scale garage dry fermentation systems are extremely nonlinear, and traditional machine learning algorithms have low prediction accuracy. Therefore, this study presents a novel intelligent system that employs two automated machine learning (AutoML) algorithms (AutoGluon and H2O) for biogas performance prediction and Shapley additive explanation (SHAP) for interpretable analysis, along with multiobjective particle swarm optimization (MOPSO) for early warning guidance of industrial-scale garage dry fermentation. The stacked ensemble models generated by AutoGluon have the highest prediction accuracy for digester and percolate tank biogas performances. Based on the interpretable analysis, the optimal parameter combinations for the digester and percolate tank were determined in order to maximize biogas production and CH4 content. The optimal conditions for the digester involve maintaining a temperature range of 35–38 °C, implementing a daily spray time of approximately 10 min and a pressure of 1000 Pa, and utilizing a feedstock with high total solids content. Additionally, the percolate tank should be maintained at a temperature range of 35–38 °C, with a liquid level of 1500 mm, a pH range of 8.0–8.1, and a total inorganic carbon concentration greater than 13.8 g/L. The software developed based on the intelligent system was successfully validated in production for prediction and early warning, and MOPSO-recommended guidance was provided. In conclusion, the novel intelligent system described in this study could accurately predict biogas performance in industrial-scale garage dry fermentation and guide operating condition optimization, paving the way for the next generation of intelligent industrial systems.

To document

Abstract

Biowaste is becoming a significant category in the global energy mix to mitigate the negative impacts of burning fossil fuels. The aim of this review paper was to investigate the potential, conversion mechanisms, benefits, and policy gaps related to the utilization of solid biowaste resources as renewable, clean, and affordable energy sources. Thus, a systematic review approach was employed to undertake a comprehensive analysis of the studies that dealt with solid biowaste resources for energy recovery. This review paper was conducted from November 2022 to June 2023. The relevant literature was searched using databases from scholarly journal publishers, online search engines, and websites. A total of 82 studies were determined to be eligible from 659 records. Ethiopia has a huge potential for biowaste resources, with an annual generation potential of 18,446.4 MJ per year. The multifaceted advantages associated with biowaste-to-energy conversion such as clean energy production, waste management, forest conservation, greenhouse gas emission reduction, and maintaining soil fertility using the digestate left after anaerobic digestion were mentioned. This review highlights various conversion technologies for converting solid biowastes into valuable forms of energy, such as thermochemical, biochemical, and physico-mechanical techniques. It also investigated the value-added products of the Solid Biowastes-to-Energy (SBWtoE) process, including bio-oil, syngas, bioethanol, biodiesel, biomethane, bio-briquettes, and pellets, with applications ranging from transportation to power generation. Furthermore, this review addresses the multifaceted challenges associated with implementing a circular economy, emphasizing the need to overcome policy, technological, financial, and institutional barriers. These efforts are crucial for harnessing the growing biowaste resources in Ethiopia, ultimately promoting sustainable and cost-effective energy production while advancing the nation's environmental objectives.

To document

Abstract

The anaerobic digestion (AD) of food waste (FW) was easy to acidify and accumulate ammonia nitrogen. Adding exogenous materials to the AD system can enhance its conversion efficiency by alleviating acidification and ammonia nitrogen inhibition. This work investigated the effects of the addition frequency and additive amount on the AD of FW with increasing organic loading rate (OLR). When the OLR was 3.0 g VS per L per day and the concentration of the additives was 0.5 g per L per day, the stable methane yield reached 263 ± 22 mL per g VS, which was higher than that of the group without the additives (189 mL per g VS). Methanosaetaceae was the dominant archaea, with a maximum abundance of 93.25%. Through machine learning analysis, it was found that the optimal daily methane yield could be achieved. When the OLR was within the range of 0–3.0 g VS per L per day, the pH was within the range of 7.6–8.0, and the additive concentration was more than 0.5 g per L per day. This study proposed a novel additive and determined its usage strategy for regulating the AD of FW through experimental and simulation approaches.

To document

Abstract

The anaerobic digestion of organic materials produces biogas; however, optimizing methane (CH4) content within biogas plants by capturing carbon dioxide (CO2) is one of the challenges for sustainable biomethane production. CH4 is separated from biogas, which is called biogas upgrading for biomethane production. In this regard, in-situ CO2 capture and utilization could be an alternative approach that can be achieved using conductive particles, where the conductive particles support the direct intraspecific electron transfer (DIET) to promote CH4 production. In this investigation, a carbon nanotube (CNT) was grown over conductive activated carbon (AC). Then an iron (Fe) nanoparticle was anchored (AC/CNT/Fe), which ultimately supported microbes to build the biofilm matrix, thereby enhancing the DIET for CH4 formation. The biogas production and CH4 content increased by 17.57 % and 15.91 %, respectively, when AC/CNT/Fe was utilized. Additionally, 18S rRNA gene sequencing reveals that Methanosarcinaceae and Methanobacteriaceae families were the most dominant microbes in the reactor when conductive particles (AC/CNT/Fe) were applied. The proposed study supports the stable operation of biogas plants to utilize CO2 for CH4 production by using surface-modified material.